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ABSTRACT

Relational deep learning (RDL) has emerged as a powerful paradigm for learning
directly on relational databases by modeling entities and their relationships across
multiple interconnected tables. As this paradigm evolves toward larger models
and relational foundation models, scalable and realistic benchmarks are essen-
tial for enabling systematic evaluation and progress. In this paper, we introduce
RELBENCH v2, a major expansion of the RELBENCH benchmark for RDL. REL-
BENCH v2 adds four large-scale relational datasets spanning scholarly publications,
enterprise resource planning, consumer platforms, and clinical records, increasing
the benchmark to 11 datasets comprising over 22 million rows across 29 tables.
We further introduce autocomplete tasks, a new class of predictive objectives that
require models to infer missing attribute values directly within relational tables
while respecting temporal constraints, expanding beyond traditional forecasting
tasks constructed via SQL queries. In addition, RELBENCH v2 expands beyond
its native datasets by integrating external benchmarks and evaluation frameworks:
we translate event streams from the Temporal Graph Benchmark into relational
schemas for unified relational–temporal evaluation, interface with ReDeLEx to
provide uniform access to 70+ real-world databases suitable for pretraining, and
incorporate 4DBInfer datasets and tasks to broaden multi-table evaluation cover-
age. Experimental results demonstrate that RDL models consistently outperform
single-table baselines across autocomplete, forecasting, and recommendation tasks,
highlighting the importance of modeling relational structure explicitly.

1 INTRODUCTION

Relational databases are the primary storage abstraction for structured data across enterprise, sci-
entific, and healthcare systems. They organize information across multiple tables interconnected
via primary–foreign key relationships, capturing rich structural and temporal dependencies between
entities. Forecasting tasks such as predicting customer churn, estimating sales, recommending prod-
ucts, and anticipating system or patient outcomes are central to real-world decision making and have
driven significant interest in applying machine learning to relational data.

Relational deep learning (RDL) (Robinson et al., 2024; Fey et al., 2024) has emerged as a powerful
paradigm for learning directly on relational databases, reducing the human effort and engineering
complexity of traditional machine learning pipelines that rely on manually flattening relational
schemas into single tables through feature engineering and aggregation. Instead, RDL treats relational
databases as heterogeneous graphs and applies graph neural networks (Robinson et al., 2024; Chen
et al., 2025) and other relational representation learning architectures (Dwivedi et al., 2025a;b)
to model entities and their relationships directly. RDL models have demonstrated state-of-the-art
performance in forecasting tasks over relational data.

At the same time, the machine learning landscape has shifted toward foundation models, which are
pretrained on large and diverse datasets to learn transferable representations. This paradigm has
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transformed natural language processing and computer vision, and has recently extended to tabular
data, where pretrained models achieve strong performance across predictive tasks (Hollmann et al.,
2023; 2025; Qu et al., 2025). However, these approaches focus on single-table data and do not capture
the multi-table structure of relational databases. To address this limitation, recent efforts (Fey et al.,
2025; Wang et al., 2025; Ranjan et al., 2025) develop foundation models for relational databases,
leveraging RDL architectures to model entities and their interdependencies across tables. Given their
ubiquity and structural richness, relational databases represent a natural next frontier for foundation
models, motivating benchmarks that capture realistic relational structure and predictive tasks.

To support machine learning research for forecasting on relational databases, Robinson et al. (2024)
introduced RELBENCH, the first benchmark for RDL. RELBENCH v1 provided a collection of real-
world relational databases along with forecasting tasks that require predicting future outcomes such
as entity churn, sales, or recommendations. These tasks enabled standardized evaluation of relational
learning models and demonstrated the effectiveness of RDL compared to traditional approaches.

In this work, we introduce RELBENCH v2, a significant expansion of the benchmark that introduces
new datasets, new task types, and a new paradigm for relational prediction. RELBENCH v2 adds four
new large-scale relational datasets spanning diverse domains, increasing the total number of datasets
to eleven. These include rel-arxiv, a scholarly publication database capturing papers, authors,
categories, and citation relationships; rel-salt, an enterprise resource planning dataset modeling
sales orders and business workflows; rel-ratebeer, a consumer platform dataset containing user
interactions, product information, and reviews; and rel-mimic, a clinical dataset derived from
electronic health records. Together, these datasets introduce new relational structures, domains, and
predictive challenges, and collectively contain over 22 million rows across 29 tables.

In addition to expanding the datasets, RELBENCH v2 introduces new predictive tasks and extends
the benchmark with multiple strategic integrations of diverse external benchmarks and diagnostic
frameworks. Most notably, RELBENCH v2 introduces autocomplete tasks, where the objective is
to predict values of existing columns in relational tables at a given timestamp, requiring models to
infer missing values from relational and temporal context while preventing information leakage. In
addition, as subsequent efforts following RELBENCH v1 have expanded the scale and diversity of
relational benchmarks, we integrate several of these into RELBENCH v2. These include temporal
interaction datasets from the Temporal Graph Benchmark (TGB) (Rossi et al., 2020), widespread
RDL evaluation on 70+ relational databases via ReDeLEx (Peleška & Šír, 2025), and the 4D design
space for graph-centric relational modeling from 4DBInfer (Wang et al., 2024). Additional discussion
on RDL and relational foundation models can be found in Appendix A.

2 OVERVIEW AND DESIGN

RELBENCH v1 (Robinson et al., 2024) laid the framework for creating a benchmark for deep learning
on relational databases. The benchmark consists of two key components: a collection of diverse
real-world relational databases, and each database’s corresponding set of realistic predictive tasks.

• Relational databases, consisting of a set of tables connected via primary–foreign key rela-
tionships. Tables store diverse information about entities, and some include time columns
indicating when rows are created (e.g., transaction date). Each database is associated with
fixed VAL_TIMESTAMP and TEST_TIMESTAMP cutoffs: models are trained on data up to
VAL_TIMESTAMP, validated on rows between VAL_TIMESTAMP and TEST_TIMESTAMP, and
tested on rows after TEST_TIMESTAMP. Data beyond the test cutoff is hidden during inference to
prevent test-time leakage (Kapoor & Narayanan, 2023), using the temporal neighbor sampling
strategy of Fey et al. (2024).

• Predictive tasks are defined per database via a training table (Fey et al., 2024). Each training
table specifies an entity ID, a seed time, and target labels. The seed time determines when
the prediction is made and filters out future information. Importantly, the VAL_TIMESTAMP
and TEST_TIMESTAMP cutoffs are shared across all tasks within a dataset, enabling multi-task
learning and pre-training across predictive tasks defined on the same relational database.

Autocomplete tasks: RELBENCH v2 introduces autocomplete tasks, a new paradigm of predictive
tasks. These tasks allow for making predictions on the existing columns within tables in the dataset,
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Table 1: Statistics of new RELBENCH datasets. Datasets vary significantly in the number of tables,
total number of rows, and number of columns. In this table, we only count rows available for test
inference, i.e., rows up to the test time cutoff.

Name Domain #Tasks
Tables Timestamp (year-mon-day)

#Tables #Rows #Cols Start Val Test

rel-salt Enterprise 8 4 4,257,145 31 2018-01-02 2020-02-01 2020-07-01
rel-arxiv Academic 4 6 2,146,112 21 2018-01-01 2022-01-01 2023-01-01
rel-ratebeer Consumer 8 13 13,787,005 221 2000-04-02 2018-09-01 2020-01-01
rel-mimic Medical 1 6 2,424,751 54 1970-02-21 1970-03-14 1970-03-19

Total 21 29 22,615,013 327 / / /

as opposed to the previous forecasting tasks that predict on target labels constructed via SQL queries.
However, like forecasting tasks, autocomplete tasks are still temporal in nature. Autocomplete tasks
can be thought of as adding a new row to the database, filling some columns, and then trying to
predict the remaining columns without access to future data.

Autocomplete tasks expand the utility of the benchmark and widen the scope of real-world RDL
applications; in order to successfully predict on autocomplete tasks, models need to deeply understand
the relational context of the data. They have many real-world applications. In fact, these tasks were
inspired by the SALT (Klein et al., 2024) sales order autocomplete task (see Figure 5), where the
SAP S/4HANA Sales Order user interface recommends a payment category based on answers to
other data fields and contextual knowledge from the relational schema.

A key consideration for autocomplete tasks involves preventing information leakage, as some columns
in a table may be highly correlated. Therefore, designing autocomplete tasks requires dropping the
columns that correlate with the specified target column. For instance, in the review-rating
task for the rel-amazon dataset, we must drop the ’review_text’ column, which otherwise would
provide intertwined signals with the review ratings. This prevents such interdependent columns from
guiding predictions on the target column, hence preserving the authenticity of each predictive task
and maintaining its real-world applicability.

RDL implementation: RELBENCH v2 utilizes the same RDL framework defined by Robinson et al.
(2024). To reiterate, we first encode raw row-level data into initial node embeddings via PyTorch
Frame (Hu et al., 2024), specifically with the ResNet tabular model (Gorishniy et al., 2021). We
perform temporal-aware subgraph sampling (Fey et al., 2024) around each entity node at a given
seed time, where the embeddings are passed into a heterogeneous GraphSAGE model (Hamilton
et al., 2017; Fey & Lenssen, 2019) with sum-based neighbor aggregation to iteratively update node
embeddings. Finally, task-specific prediction heads turn output embeddings into predictions.

The rest of this paper is organized as follows. Section 3 describes the new RELBENCH relational
databases. Sections 4 and 5 introduce the new autocomplete and forecasting predictive tasks for each
RELBENCH dataset, including results from benchmarking our RDL implementation against baselines.
Finally, Section 6 describes the expansion of the RELBENCH ecosystem through the integration of
external datasets and multi-dimensional RDL benchmarking tools.

3 RELBENCH DATASETS

In RELBENCH v2, we introduce four new datasets, bringing the total number of datasets in the bench-
mark to eleven. These new datasets expand RELBENCH into new domains such as scholarly citations
and enterprise operations, widening the breadth of data the benchmark covers and strengthening its
position as a core benchmark for foundation models in RDL. Each dataset’s predictive autocomplete
and forecasting tasks are explained in more detail in Sections 4 and 5, respectively. Detailed statistics
for the new datasets can be found in Table 1.

3.1 REL-ARXIV

The arXiv-physics dataset (Tang et al., 2024) is a large-scale relational benchmark of over 222,000
research papers published between 2018 and 2023, designed to expand RELBENCH into the domain
of scholarly network analysis. It captures the complex evolution of scientific research through 1.5
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million directed citation links, paper-author relationships mapped via unique ORCID identifiers,
and a hierarchical taxonomy of 53 physics categories. By modeling these dense many-to-many
relations between 143,000 authors and their respective research areas, the dataset provides a rich,
high-fidelity structure for evaluating relational deep learning (RDL) models within the academic
citation ecosystem.

3.2 REL-SALT

The Sales Autocompletion Linked Business Tables (SALT) (Klein et al., 2024) database, released
by SAP AI Research, provides an authentic relational dataset of end-to-end business transactions
captured from an enterprise resource planning (ERP) system. Centered on sales document headers
and line items linked to customer and address master data, SALT models internal enterprise workflows
including sales offices, shipping points, and payment terms. Each record is timestamped by creation
time to facilitate temporal modeling, with predictive tasks focused on multiclass classification of
operational variables in real-world supply chain and order fulfillment settings. By contributing
minimally processed industry data, SALT offers a unique business perspective to the RELBENCH
ecosystem and broader relational database research.

3.3 REL-RATEBEER

The RateBeer dataset provides over two decades of user interactions across distinct tables for
beers, places, users, and brewers. Linked through well-defined foreign keys, these attribute-rich
tables contain over 30 columns of multi-modal features—including text, categorical, and temporal
data—while interaction tables offer granular feedback through multi-aspect sub-scores and textual
reviews. rel-ratebeer contributes a dataset with strong potential for capturing user preferences
in multiple ways; by mapping users to beers, the dataset provides powerful signals for modeling
preferences via both explicit rating scores and implicit "Favorites" lists.

3.4 REL-MIMIC

The Medical Information Mart for Intensive Care IV (MIMIC-IV) (Johnson et al., 2024) is a large,
deidentified electronic health record (EHR) dataset containing clinical data from patients at the Beth
Israel Deaconess Medical Center. Designed to support clinical research and machine learning, the
RELBENCH implementation allows for deep customization, including parameters to limit patient or
table counts, drop specific columns, and filter by features like age. While the standard RELBENCH
download utilizes a subset of 20,000 patients, the dataset also supports integration with Google
BigQuery for accessing the full MIMIC-IV v3.1 data. Due to the sensitive nature of real-world
medical data, users must obtain proper credentials through PhysioNet to access the dataset.

4 AUTOCOMPLETE TASKS

RELBENCH v2 introduces 23 autocomplete tasks for both existing and new datasets. Autocomplete
tasks are grouped into two task types: autocomplete classification (Section 4.1) and autocomplete
regression (Section 4.2). Tasks are named based on the table and column used as the target labels
for the predictions. A full list of autocomplete tasks is given in Table 2, with high-level descriptions
given in Appendix C.

4.1 AUTOCOMPLETE CLASSIFICATION

Autocomplete classification tasks aim to predict labels for existing categorical columns in a dataset.
Because categorical data often comes in both binary and multiclass situations, autocomplete tasks
support both binary classification and multiclass classification. For binary classification, we use
the ROC-AUC (Hanley & McNeil, 1983) metric for evaluation, where higher scores are better. For
multiclass classification, we use accuracy as the evaluation metric, where higher is also better. As a
baseline to compare our heterogeneous GraphSAGE model against, we utilize a LightGBM classifier
baseline over the raw entity table features.
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Table 2: Full list of new autocomplete tasks. Autocomplete tasks aim to make predictions on
existing columns in the dataset.

Dataset Task name Task type
#Rows of training table #Unique

Entities

%train/test
Entity

Overlap

#Dst
EntitiesTrain Validation Test

rel-amazon review-rating auto-reg 11,822,796 806,355 8,217,532 17,255,399 40.5 –

rel-avito
searchstream-click auto-bcls 2,212,750 1,177,380 924,990 3,976,413 23.8 –
searchinfo-isuserloggedon auto-bcls 1,291,566 695,590 592,133 2,579,289 0.0 –

rel-event
event_interest-interested auto-bcls 14,442 536 420 14,992 94.5 –
event_interest-not_interested auto-bcls 14,442 536 420 14,992 94.5 –
users-birthyear auto-reg 33,937 1,731 1,002 36,670 0.0 –

rel-f1
results-position auto-reg 8,997 1,400 4,798 15,195 0.0 –
qualifying-position auto-reg 2,228 1,854 5,733 9,815 0.0 –

rel-hm transactions-price auto-reg 14,844,291 235,662 266,364 15,346,317 0.0 –

rel-ratebeer beer_ratings-total_score auto-reg 10,620,177 1,227,702 2,495,360 14,343,239 0.0 –

rel-salt

item-plant auto-mcls 1,622,787 293,823 400,206 2,316,816 0.0 –
item-shippoint auto-mcls 1,622,787 293,780 398,536 2,315,103 0.0 –
item-incoterms auto-mcls 1,622,787 293,891 402,835 2,319,513 0.0 –
sales-office auto-mcls 340,491 71,474 88,942 500,907 0.0 –
sales-group auto-mcls 340,491 70,224 83,193 493,908 0.0 –
sales-payterms auto-mcls 340,491 71,472 88,831 500,794 0.0 –
sales-shipcond auto-mcls 340,491 71,398 88,422 500,311 0.0 –
sales-incoterms auto-mcls 340,491 71,470 88,925 500,886 0.0 –

rel-stack badges-class auto-mcls 448,358 15,105 127,370 590,833 0.0 –

rel-trial

studies-enrollment auto-reg 233,072 14,470 23,430 270,972 0.0 –
studies-has_dmc auto-bcls 202,840 11,983 18,944 233,767 0.0 –
eligibilities-adult auto-bcls 234,366 14,470 23,430 272,266 0.0 –
eligibilities-child auto-bcls 234,366 14,470 23,430 272,266 0.0 –

Table 3: Autocomplete binary classification results on RELBENCH. Binary classification uses the
AUROC metric (higher is better). Best values are in bold. Standard baselines of random choice and
majority class both correspond to AUROC values of approximately 50.00, so we exclude them below.
See Table 12 for standard deviations.

Dataset Task Split LightGBM GNN

rel-avito
searchinfo-isuserloggedon

Val 59.09 82.57
Test 50.00 73.00

searchstream-click
Val 68.33 50.39
Test 49.92 55.92

rel-event
event_interest-interested

Val 51.25 54.16
Test 49.57 47.64

event_interest-not_interested
Val 51.98 49.74
Test 52.88 60.40

rel-trial

eligibilities-adult
Val 58.10 94.91
Test 50.00 93.73

eligibilities-child
Val 59.78 85.91
Test 50.00 87.25

studies-has_dmc
Val 76.47 78.21
Test 50.00 75.72

Average Val 60.71 70.84
Test 50.34 70.52

Experimental results. Classification results for the new autocomplete tasks are given in Table
3 for binary classification and Table 4 for multiclass classification. In both types of classifica-
tion, RDL strongly outperforms the LightGBM baseline in all cases. On some tasks, such as
item-shippoint from rel-salt or badges-class from rel-stack, RDL’s high accu-
racy indicates that relational context gives highly informative signal to predict missing attributes.

For other tasks such as sales-office from rel-salt, comparison with the majority-class
baseline suggests a strong class imbalance in the target labels, with the majority baseline already
achieving very high accuracy. Despite this, the GNN matches or slightly improves upon the majority
baseline while maintaining strong performance on other tasks, whereas LightGBM shows unstable
behavior and substantially worse test performance, suggesting limited generalization. Overall, these
results highlight the ability of RDL to exploit relational structure for autocomplete tasks, even in the
presence of class imbalance or sparse feature information.
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Table 4: Autocomplete multiclass classification results on RELBENCH. Multiclass classification
uses the accuracy metric (higher is better). Best values are in bold. See Table 13 for std. devs.

Dataset Task Split Random Majority LightGBM GNN

rel-salt

item-incoterms
Val 34.49 66.46 66.43 80.23

Test 30.33 58.05 58.05 69.36

item-plant
Val 33.19 60.95 60.97 99.70

Test 32.38 59.69 59.69 99.46

item-shippoint
Val 8.20 2.34 4.72 98.54

Test 6.53 1.99 5.67 98.39

sales-group
Val 0.90 0.86 0.70 18.43

Test 0.85 0.75 0.94 15.76

sales-incoterms
Val 31.83 61.00 60.53 69.07

Test 29.39 56.63 56.63 62.23

sales-office
Val 50.01 99.91 99.90 99.91

Test 49.71 99.88 59.93 99.88

sales-payterms
Val 0.32 0.65 1.85 39.88

Test 0.24 0.47 5.64 37.47

sales-shipcond
Val 16.49 27.61 31.92 59.21

Test 15.64 26.30 4.91 56.85

rel-stack badges-class
Val 11.59 20.68 1.93 79.97

Test 10.49 18.34 2.51 82.83

Average
Val 20.78 37.83 36.55 71.66

Test 19.51 35.79 28.22 69.14

Table 5: Autocomplete regression results on RELBENCH. Regression uses the R2 metric (higher is
better). Best values are in bold. See Table 14 for standard deviations and Table 15 for MAE results.

Dataset Task Split Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-amazon review-rating
Val −20.848 −0.006 −0.364 −20.848 −20.848 −0.364 −0.356

Test −22.579 −0.014 −0.341 −13.313 −13.313 −0.341 −0.331

rel-event users-birthyear
Val −55012.323 −0.047 −0.216 −55012.323 −55012.323 0.004 0.008

Test −64803.758 −0.121 −0.395 −64803.758 −64803.758 −0.192 −0.030

rel-f1
qualifying-position

Val −3.267 −0.018 −0.030 −3.267 −3.267 0.153 0.015

Test −3.214 −0.002 −0.001 −3.214 −3.214 −0.953 0.015

results-position
Val −3.123 −0.100 −0.107 −3.123 −3.123 0.283 0.440

Test −3.148 −0.176 −0.219 −3.148 −3.148 −2.437 0.394

rel-hm transactions-price
Val −2.215 −0.065 −0.140 −2.215 −2.215 −0.140 0.725

Test −2.329 −0.075 −0.159 −2.329 −2.329 −0.160 0.736

rel-ratebeer beer_ratings-total_score
Val −23.411 −0.015 −0.004 −23.411 −23.411 −0.004 0.448

Test −34.352 −0.031 −0.003 −34.352 −34.352 −0.014 0.394

rel-trial studies-enrollment
Val −0.001 −0.000 −0.001 −0.001 −0.001 −0.001 −0.000

Test −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000

4.2 AUTOCOMPLETE REGRESSION

Autocomplete regression tasks involve predicting numerical labels of an entity at a given seed time.
For our evaluation metric, we use R2, where higher values are better. We compare our RDL approach
against four baselines. Global zero predicts zero for all entities. Global mean/median calculates
the global mean/median label value for the target column in the training data and predicts that
mean/median for every entity. Entity mean/median calculates the mean/median value with respect
to each entity, and predicts that mean/median for the entity. LightGBM joins the entity table with
the task table to get raw features from both, then learns a LightGBM (Ke et al., 2017) regressor over
those raw features to predict numerical targets.

Experimental results. Autocomplete regression results are reported in Table 5. Additionally, MAE
metrics for autocomplete regression tasks are reported in Table 15 in Appendix D. Across most
tasks, RDL achieves higher R2 values, outperforming both feature-based and aggregation baselines,
indicating that capturing relational context improves explanatory power.

5 NEW FORECASTING TASKS

Forecasting tasks were the original predictive tasks defined in RELBENCH v1, and version 2 introduces
13 new ones. Forecasting tasks are split into three types: entity classification, entity regression, and
entity recommendation (link prediction). These tasks use SQL queries to construct new task target
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Table 6: Full list of new forecasting tasks. Forecasting tasks make predictions on new target columns
created using SQL queries.

Dataset Task name Task type
#Rows of training table #Unique

Entities

%train/test
Entity

Overlap

#Dst
EntitiesTrain Validation Test

rel-arxiv

paper-citation entity-bcls 534,233 155,845 193,696 136,183 70.31 –
author-category entity-mcls 210,769 39,015 39,655 126,219 62.15 –
author-publication entity-reg 210,769 39,015 39,655 101,886 62.15 –
paper-paper-cocitation recommendation 246,341 71,257 82,033 94,289 60.57 138,688

rel-f1 driver-circuit-compete recommendation 2,649 27 27 786 40.74 19,044

rel-mimic patient-iculengthofstay entity-bcls 13,816 2,699 2,445 13,816 0.00 –

rel-ratebeer

beer-churn entity-bcls 2,470,686 92,367 79,927 516,368 45.46 –
user-churn entity-bcls 373,709 19,908 9,392 154,071 35.21 –
brewer-dormant entity-bcls 98,697 15,840 16,366 28,333 64.07 –
user-count entity-reg 373,709 19,908 9,392 154,071 35.21 –
user-beer-favorite recommendation 1,099 1,043 499 2,296 10.82 7,745
user-beer-liked recommendation 150,322 5,681 2,783 35,010 58.53 170,964
user-place-liked recommendation 38,444 547 351 7,425 81.77 46,814

Table 7: Entity binary classification results on RELBENCH. Binary classification uses the AUROC
metric (higher is better). Best values are in bold. Standard baselines of random choice and majority
class both correspond to AUROC values of approximately 50.00, so we exclude them below. See
Table 16 for standard deviations.

Dataset Task Split LightGBM GNN

rel-arxiv paper-citation
Val 71.94 82.45

Test 71.21 82.50

rel-mimic patient-iculengthofstay
Val 53.64 56.52

Test 51.81 55.01

rel-ratebeer

beer-churn
Val 81.90 90.47

Test 76.21 78.67

brewer-dormant
Val 76.39 82.10

Test 75.79 80.51

user-churn
Val 87.02 96.85

Test 83.92 94.27

Average
Val 74.18 81.68

Test 71.79 78.19

columns. Forecasting tasks also include recommendation tasks, which aim to predict the next
temporal links between two sets of entities for a given link type, such as whether users will purchase
a certain product.

We define forecasting tasks for the new datasets rel-arxiv, rel-ratebeer, and rel-mimic,
and we add a new recommendation task for rel-f1. New forecasting tasks are shown in Table 6.

5.1 ENTITY CLASSIFICATION

In RELBENCH v1, all entity-level classification tasks were binary classification. In RELBENCH v2,
we broaden to the multiclass case with the first entity multiclass classification task, rel-arxiv’s
author-category task. For entity-level forecasting tasks, both binary and multiclass classifi-
cation are evaluated with the same metrics as their autocomplete counterparts, with entity binary
classification using ROC-AUC (Hanley & McNeil, 1983) and multiclass classification using accuracy
(for both, higher is better). We again compare to a LightGBM classifier baseline over the raw entity
table features, but here only information from the single entity table is used.

Experimental results. Entity classification results for the new forecasting tasks are given in Table
7 for binary classification and Table 8 for multiclass classification, with RDL outperforming the
LightGBM baseline in all cases. Notably, RDL vastly outperforms LightGBM on the multiclass
author-category task, where predicting an author’s research area benefits from aggregating
relational signals from coauthorship, citation patterns, and publication context. This suggests that as
classification tasks become more complex, leveraging relational context becomes more important.
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Table 8: Entity multiclass classification results on RELBENCH. Multiclass classification uses the
accuracy metric (higher is better). Best values are in bold. See Table 17 for standard deviations.

Dataset Task Split Random Majority LightGBM GNN

rel-arxiv author-category
Val 1.75 8.83 1.95 52.63

Test 1.77 9.09 2.01 50.74

Table 9: Entity regression results on RELBENCH. Regression uses the R2 metric (higher is better).
Best values are in bold. See Table 18 for standard deviations and Table 19 for MAE results.

Dataset Task Split Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-amazon
item-ltv

Val −0.025 −0.000 −0.013 −0.247 −0.107 0.002 0.066

Test −0.013 −0.000 −0.007 0.030 0.099 0.001 0.032

user-ltv
Val −0.084 −0.003 −0.084 0.053 0.095 −0.084 0.195

Test −0.092 −0.000 −0.092 0.143 0.168 −0.092 0.172

rel-arxiv author-publication
Val −1.579 −0.012 −0.259 0.254 0.236 −0.259 0.437

Test −1.572 −0.000 −0.210 −0.010 −0.064 −0.210 0.249

rel-avito ad-ctr
Val −0.238 −0.002 −0.095 −0.224 −0.224 −0.032 0.030

Test −0.226 −0.004 −0.098 −0.148 −0.148 −0.039 −0.001

rel-event user-attendance
Val −0.249 −0.037 −0.249 −0.193 −0.147 −0.249 −0.045

Test −0.168 −0.019 −0.168 −0.065 −0.043 −0.168 0.003

rel-f1 driver-position
Val −5.715 −0.370 −0.236 −2.866 −2.840 0.150 0.249

Test −5.239 −0.119 −0.042 −2.841 −2.849 0.068 0.039

rel-hm item-sales
Val −0.017 −0.000 −0.017 0.065 0.053 −0.017 0.187

Test −0.017 −0.000 −0.017 0.058 0.042 −0.017 0.215

rel-ratebeer user-count
Val −0.037 −0.053 −0.037 0.551 0.547 0.559 0.526

Test −0.071 −0.025 −0.071 0.264 0.285 −0.170 0.625

rel-stack post-votes
Val −0.028 −0.007 −0.028 0.306 0.285 −0.028 0.122

Test −0.034 −0.004 −0.034 0.294 0.272 −0.034 0.122

rel-trial
site-success

Val −0.988 −0.005 −0.988 −0.749 −0.809 −0.319 −0.425

Test −0.923 −0.001 −0.923 −0.714 −0.751 −0.336 −0.483

study-adverse
Val −0.021 −0.002 −0.020 −0.021 −0.021 0.134 0.066

Test −0.054 −0.005 −0.050 −0.054 −0.054 0.307 0.177

5.2 ENTITY REGRESSION

Entity-level regression tasks involve predicting numerical labels of an entity at a given seed time.
Like for autocomplete regression, our evaluation metric is R2, where higher values are better. We
compare our RDL approach against essentially the same baselines as described in Section 4.2. The
only modification is that for the LightGBM baseline for entity regression, only the raw features from
the single entity table are used to predict the numerical targets.

Experimental results. The entity regression results in Table 9 show our RDL implementation
outperforms the baselines across all new forecasting regression tasks. RDL achieves higher R2 values,
indicating improved explanatory power when relational information is incorporated. Additionally,
MAE metrics are reported in Appendix D (Table 19), where RDL consistently achieves lower errors.
These results suggest that relational modeling provides consistent benefits for numeric prediction at
the entity level, even when the target variable is defined on a single entity table.

5.3 RECOMMENDATION

Recommendation tasks involve predicting, for each source entity and seed time, a ranked list of the
top-K target entities. This requires calculating pairwise scores between source and target entities.

We evaluate two GNN-based models. In GraphSAGE (Hamilton et al., 2017), source and target
embeddings are learned via message passing, and pairwise scores are computed using their inner
product, with training performed using the Bayesian Personalized Ranking loss (Rendle et al., 2012).
In ID-GNN (You et al., 2021), target embeddings are passed through a source-specific MLP prediction
head to produce pairwise scores, and the model is trained with cross-entropy loss (You et al., 2021).

We report Mean Average Precision (MAP) @K (higher is better), with K set per task. Baselines
include Past Visit, which ranks targets by how often they were previously visited by each source
entity. Global Popularity ranks targets by overall frequency in the training data. LightGBM (Ke et al.,
2017) predicts source–target links using concatenated entity features, augmented with popularity and
past-visit rank features.
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Table 10: Recommendation results on RELBENCH. Recommendation uses the MAP metric, where
higher values are better. Best values are in bold. See Table 20 for standard deviations.

Dataset Task Split Past Visit Global Pop. LightGBM GNN (2) GNN (4) IDGNN (2) IDGNN (4)

rel-arxiv paper-paper-cocitation
Val 19.01 1.25 12.49 12.19 12.96 25.22 35.76

Test 16.51 1.13 11.01 8.83 10.46 22.95 35.39

rel-f1 driver-circuit-compete
Val 53.41 55.19 66.06 3.60 10.57 70.70 74.40

Test 20.76 50.12 57.77 9.67 16.57 62.32 76.18

rel-ratebeer

user-beer-favorite
Val 0.00 2.33 1.24 2.09 − 3.09 3.33

Test 0.00 1.10 0.67 0.56 − 1.21 1.89

user-beer-liked
Val 0.00 0.77 0.43 0.77 ¯ 0.21 1.48

Test 0.00 0.61 0.29 0.54 − 0.32 1.46

user-place-liked
Val 0.00 0.24 0.24 1.06 ¯ 0.88 2.20

Test 0.00 0.11 0.08 1.15 − 0.60 1.85

Average
Val 14.48 11.96 16.09 3.94 11.76 20.02 23.43

Test 7.45 10.61 13.96 4.15 13.52 17.48 23.35

Experimental results. Results are given in Table 10. In general, we observe that either the RDL
implementation using GraphSAGE (Hamilton et al., 2017), or ID-GNN (You et al., 2021) as the
GNN component performs best, often by a very significant margin. ID-GNN excels in settings where
predictions are highly entity-specific, whereas the plain GNN performs better when such specificity
is less critical. This behavior reflects the inductive biases of the two models: GraphSAGE primarily
captures structural and neighborhood-based patterns, while ID-GNN explicitly incorporates node
identity information. Additionally, increasing the number of layers in the RDL models from two
layers to four tended to yield improved performance across both GNN-based models, although the
four-layer GraphSAGE model encountered CUDA memory errors on an 80GB Nvidia A100. These
results highlight the multi-hop nature of recommendation tasks.

6 INTEGRATING EXTERNAL BENCHMARKS INTO RELBENCH

RELBENCH (Robinson et al., 2024) introduced the first standardized benchmark for forecasting
over relational databases, enabling end-to-end evaluation of RDL methods on real-world multi-table
datasets. Subsequent efforts have expanded the scale and diversity of relational benchmarks. In
addition to the new relational databases and tasks introduced in RELBENCH v2, we also extend
RELBENCH with direct integration of external benchmarks and diagnostic frameworks. These include
a suite of large-scale temporal interaction datasets sourced from the Temporal Graph Benchmark
(TGB) (Rossi et al., 2020), widespread evaluation of RDL models on 70+ relational databases via
ReDeLex (Peleška & Šír, 2025), and a 4D benchmarking toolbox spanning multiple datasets, tasks,
graph construction strategies, and predictive models from 4DBInfer (Wang et al., 2024).

6.1 TEMPORAL GRAPH BENCHMARK (TGB)

The Temporal Graph Benchmark (TGB) is a benchmark centered on learning from time-stamped event
streams (temporal edges), with evaluation protocols that enforce strict chronological generalization.
By translating TGB datasets into the RELBENCH database and task abstraction, we enable direct
comparisons between (i) temporal GNN baselines that operate on event streams and (ii) relational
deep learning baselines that operate on a multi-table schema with explicit primary/foreign key
structure. Following the principle of normalization in database theory, we make the decision to
translate each node and edge type into its own table. We focus on TGB datasets, excluding knowledge
graphs that require additional adjustments, and naturally map the remaining datasets to relational event
logs targeting the following downstream tasks: (i) Dynamic Link Property Prediction (tgbl-*),
(ii) Dynamic Node Property Prediction (tgbn-*), and (iii) Temporal Heterogeneous Graph Link
Prediction (thgl-*).

The converted TGB datasets cover diverse domains and scales, from small bipartite interaction graphs
to multi-relational, multi-entity temporal databases with tens of millions of events. The key outcome
of the conversion is that each dataset becomes a RELBENCH Database (parquet tables plus schema
metadata) together with temporal cutoffs and tasks, enabling training and evaluation under the same
leakage-safe conventions used elsewhere in RELBENCH. The dataset statistics can be found in Table
11. Additional details about the RELBENCH TGB datasets and experiments can be found in App. E.
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Table 11: Statistics of TGB datasets translated into RELBENCH. We report the relational size of
each translated dataset as stored in parquet: number of tables, total number of rows (summed across
all tables, up to the test-time cutoff), and total number of columns (summed across all tables).

Task family Dataset #Tables #Rows #Cols

tgbl-* (link)

tgbl-wiki-v2 3 166,701 7
tgbl-review-v2 2 5,226,177 6
tgbl-coin 2 23,447,972 6
tgbl-comment 2 45,309,297 6
tgbl-flight 2 67,187,713 6

tgbn-* (node)

tgbn-trade 5 934,072 14
tgbn-genre 5 20,858,841 14
tgbn-reddit 5 43,669,153 14
tgbn-token 5 81,663,534 14

thgl-* (hetero link)

thgl-software 18 2,171,733 74
thgl-forum 4 23,910,523 12
thgl-github 18 23,356,342 74
thgl-myket 4 55,163,623 12

6.2 RELATIONAL DEEP LEARNING EXPLORATION (REDELEX)

Relational Deep Learning Exploration (ReDeLEx) (Peleška & Šír, 2025) is a large-scale experimental
framework for systematically evaluating Relational Deep Learning (RDL) on real-world relational
databases. From the CTU Relational Learning Repository (Motl & Schulte, 2025), ReDeLEx
integrates over 70 datasets into a unified pipeline that connects directly to SQL databases, infers
attribute semantics, and represents relational schemas as heterogeneous graphs. These datasets
span domains such as healthcare, government, education, sports, and business applications, vastly
increasing RELBENCH’s coverage of data. RDL models in ReDeLEx follow a modular design that
combines attribute encoders, optional tabular models, graph neural network layers, and task-specific
prediction heads. These models enable controlled comparisons across architectures such as linear
GraphSAGE, Tabular ResNet–augmented GNNs, and Transformer-based models.

6.3 4DBINFER

4DBInfer (Wang et al., 2024) is a large-scale benchmarking effort focused on predictive modeling
over multi-table relational databases. 4DBInfer introduces an explicit four-dimensional evaluation
framework: datasets, tasks, relational-to-graph construction strategies, and predictive model families.
These are designed to expose how modeling choices across the full pipeline impact performance.
While 4DBInfer explores this design space through extensive empirical comparisons, its datasets and
task formulations provide a valuable foundation for unified evaluation. As part of RELBENCH v2, we
incorporate 7 4DBInfer datasets and 12 tasks, allowing RELBENCH to inherit the scale and diversity
of 4DBInfer while enforcing consistent experimental conventions across relational, temporal, and
graph-based learning settings.

7 CONCLUSION

In this work, we introduced RELBENCH v2, a major expansion of the RELBENCH benchmark for
relational deep learning (RDL). RELBENCH v2 adds four large-scale relational datasets spanning
academic, enterprise, consumer, and clinical domains, substantially increasing the scale and diversity
of real-world relational data. We further introduced autocomplete tasks, a new class of predictive
objectives that require models to infer missing attribute values directly within relational tables
under temporal constraints, complementing traditional forecasting and recommendation tasks. In
addition, we integrated temporal interaction datasets from the Temporal Graph Benchmark (TGB), and
relational databases from Relational Deep Learning Exploration (ReDeLEx) and 4DBInfer, enabling
unified evaluation across relational and temporal learning settings. Experimental results show
that RDL models consistently outperform single-table baselines across autocomplete, forecasting,
and recommendation tasks, highlighting the importance of modeling relational structure explicitly.
RELBENCH v2 provides a scalable and realistic benchmark to support the development and evaluation
of RDL systems and relational foundation models.
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A RELATED WORK

Relational deep learning (RDL). RDL studies how to train neural models directly on relational
databases by leveraging their multi-table structure. RDL represents a relational database as a
heterogeneous graph, where rows correspond to entities and foreign-key relationships define edges
between them (Fey et al., 2024). Early works applied graph neural networks to such relational
graphs and demonstrated substantial improvements over feature-engineered baselines on forecasting,
recommendation, and prediction tasks (Robinson et al., 2024; Chen et al., 2025). More recent
approaches have explored transformer-based architectures to better capture long-range and higher-
order dependencies across tables (Peleška & Šír, 2024; Dwivedi et al., 2025a), as well as positional
encoding methods designed to improve representation learning on relational graphs (Kanatsoulis
et al., 2025).

Foundation models for tabular and relational data. Recent tabular foundation models demonstrate
strong performance, including in-context learning (Hollmann et al., 2023; Qu et al., 2025) and efficient
fine-tuning (Kim et al., 2024). These models leverage supervised (Hollmann et al., 2023; 2025)
or self-supervised (Spinaci et al., 2024; Kim et al., 2024) pretraining on real and synthetic tabular
datasets. Extending such models to relational databases is challenging due to the presence of multiple
tables connected via foreign-key relationships. To address this, relational foundation models have
recently been proposed. For example, Fey et al. (2025) introduce KumoRFM, a graph-transformer-
based architecture capable of in-context learning and fine-tuning. Similarly, Wang et al. (2025)
pretrain the Griffin model on both tabular and relational datasets, combining table-level encoders with
graph neural networks for cross-table reasoning. More recent approaches operate directly at the cell
level and use attention mechanisms to explicitly represent foreign-key relationships, enabling unified
reasoning across the entire relational database without requiring intermediate aggregation (Ranjan
et al., 2025). To circumvent real-data limitations for large-scale pretraining, recent works have
explored generating privacy-preserving versions of real databases with diffusion models (Hudovernik
et al., 2025; Ketata et al., 2025) as well as generating synthetic databases from scratch using random
graphs and Structural Causal Models (SCMs) (Kothapalli et al., 2026). In contrast, in RELBENCH v2
we collect a large number of realistic databases in a uniformly accessible manner.

B DATASET SCHEMAS

Figure 1: RELBENCH schema of the newly added Sales Autocompletion Linked Business Tables
(SALT) dataset (Klein et al., 2024).
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Figure 2: RELBENCH schema of the newly added arXiv-physics dataset (Tang et al., 2024).

C ADDITIONAL TASK INFORMATION

C.1 AUTOCOMPLETE TASK: MOTIVATION

Autocomplete tasks were inspired by the sales order autocomplete task from the SAP S/4HANA
Sales Order User interface. In Figure 5, the response fields as a whole correspond to one row in a
dataset. The user has filled in most of the response fields, allowing the interface to predict the terms
of payment for this record.

C.2 LIST OF PREDICTIVE TASK DESCRIPTIONS

1. rel-amazon
Autocomplete Regression:

• review-rating: For each review, predict the star rating.

2. rel-arxiv
Forecasting Classification:

• paper-citation: For each paper, predict whether it will receive at least one
citation in the next 6 months.

• author-category: For each author, predict the primary research category in which
they will publish most in the next 6 months.

Forecasting Regression:

• author-publication: For each author, predict how many papers they will publish
in the next 6 months.

Recommendation:

• paper-paper-cocitation: For each paper, predict which other papers will be
co-cited with it in the next 6 months.

3. rel-avito
Autocomplete Classification:

• searchstream-click: For each search session, predict whether the user clicked
on a result.

• searchinfo-isuserloggedon: For each search, predict whether the user was
logged in.

4. rel-trial
Autocomplete Classification:
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Figure 3: RELBENCH schema of the newly added RateBeer dataset.
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Figure 4: RELBENCH schema of the newly added MIMIC-IV v3.1 dataset (Johnson et al., 2024).

Figure 5: Illustrative example of a real-world autocomplete task, where the SAP S/4HANA Sales
Order User interface (Klein et al., 2024) predicts payment terms based on other filled-in response
fields.

• studies-has_dmc: For each study, predict whether it has a data monitoring com-
mittee.

• eligibilities-adult: For each study, predict whether it includes adult partici-
pants.

• eligibilities-child: For each study, predict whether it includes child partici-
pants.

Autocomplete Regression:
• studies-enrollment: For each study, predict the enrollment count.

5. rel-event
Autocomplete Classification:

• event_interest-interested: For each user–event interaction, predict
whether the user marked the event as “interested.”

• event_interest-not_interested: For each user–event interaction, predict
whether the user marked the event as “not interested.”

Autocomplete Regression:
• users-birthyear: For each user, predict the user’s birth year.

6. rel-f1
Autocomplete Regression:

• results-position: For each race result, predict the finishing position.
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• qualifying-position: For each qualifying entry, predict the qualifying position.
Recommendation:

• driver-circuit-compete: Predict in which circuits a driver will compete in
the next year.

7. rel-hm
Autocomplete Regression:

• transactions-price: For each transaction, predict the item price.
8. rel-ratebeer

Autocomplete Regression:
• beer_ratings-total_score: For each user, given a beer, predict the total score

rating the user will give to the beer.
Forecasting Classification:

• beer-churn: For each beer, predict if it will receive zero ratings in the next 90 days.
• user-churn: For each active user, predict if they will rate zero beers in the next 90

days.
• brewer-dormant: For each brewer, predict if it will release zero beers in the next

year (risk of going dormant).
Forecasting Regression:

• user-count: Predict the number of ratings a user will give in the next 90 days.
Recommendation:

• user-beer-favorite: For each user, predict the top 10 beers they will next add
to their Favorites list.

• user-beer-liked: For each user, predict the top 10 beers they will rate at least
4.0 / 5.0.

• user-place-liked: For each user, predict the top 10 places they will rate at least
80 / 100.

9. rel-salt
Autocomplete Classification:

• item-plant: For each sales order item, predict its plant (production/storage facility).
• item-shippoint: For each sales order item, predict its shipping point (dispatch

location).
• item-incoterms: For each sales order item, predict its item-level international

commercial terms.
• sales-office: For each sales order, predict the sales office responsible for manag-

ing sales activities for the relevant products and geographic region.
• sales-group: For each sales order, predict the sales group, i.e. the subdivision

within the distribution chain that handles the customer and transaction.
• sales-payterms: For each sales order, predict the customer payment terms (pay-

ment deadlines/discounts).
• sales-shipcond: For each sales order, predict the shipping condition (logistics

terms).
• sales-incoterms: Predict the header-level Incoterms (international commercial

terms) for each sales order.
10. rel-stack

Autocomplete Classification:
• badges-class: For each badge, predict the badge class.

11. rel-mimic
Forecasting Classification:

• patient-iculengthofstay: For each patient admitted into the ICU, predict
whether their stay will last at least 3 days.
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D ADDITIONAL RESULTS AND EXPERIMENT DETAILS

D.1 RESULTS WITH STANDARD DEVIATIONS

Tables 12 - 20 show mean and standard deviations over 5 runs for the autocomplete classification,
autocomplete regression, entity classification, entity regression and link prediction results for all new
tasks introduced in RELBENCH v2. For regression tasks, MAE metrics are reported below (the main
paper reports R2 metrics).

Table 12: Autocomplete binary classification results on RELBENCH. Binary classification uses
the AUROC metric (higher is better). Standard baselines of random choice and majority class both
correspond to AUROC values of approximately 50.00, so we exclude them below. Best values are in
bold.

Dataset Task Split LightGBM GNN

rel-avito
searchinfo-isuserloggedon

Val 59.09±0.37 82.57±0.64

Test 50.00±0.00 73.00±0.79

searchstream-click
Val 68.33±0.19 50.39±0.22

Test 49.92±0.17 55.92±14.04

rel-event
event_interest-interested

Val 51.25±0.00 54.16±1.75

Test 49.57±0.00 47.64±3.44

event_interest-not_interested
Val 51.98±0.00 49.74±13.71

Test 52.88±0.00 60.40±19.57

rel-trial

eligibilities-adult
Val 58.10±0.23 94.91±0.10

Test 50.00±0.00 93.73±0.15

eligibilities-child
Val 59.78±0.15 85.91±0.20

Test 50.00±0.00 87.25±0.10

studies-has_dmc
Val 76.47±0.26 78.21±0.12

Test 50.00±0.00 75.72±0.11

Table 13: Autocomplete multiclass classification results on RELBENCH. Multiclass classification
uses the accuracy metric (higher is better). Best values are in bold.

Dataset Task Split Random Majority LightGBM GNN

rel-salt

item-incoterms
Val 34.49 66.46 66.43±0.01 80.23±0.48

Test 30.33 58.05 58.05±0.00 69.36±0.77

item-plant
Val 33.19 60.95 60.97±0.04 99.70±0.16

Test 32.38 59.69 59.69±0.00 99.46±0.12

item-shippoint
Val 8.20 2.34 4.72±0.02 98.54±0.13

Test 6.53 1.99 5.67±5.18 98.39±0.08

sales-group
Val 0.90 0.86 0.70±0.12 18.43±0.22

Test 0.85 0.75 0.94±1.32 15.76±0.30

sales-incoterms
Val 31.83 61.00 60.53±0.09 69.07±1.46

Test 29.39 56.63 56.63±0.00 62.23±0.53

sales-office
Val 50.01 99.91 99.90±0.00 99.91±0.00

Test 49.71 99.88 59.93±54.71 99.88±0.00

sales-payterms
Val 0.32 0.65 1.85±0.33 39.88±0.19

Test 0.24 0.47 5.64±5.14 37.47±0.43

sales-shipcond
Val 16.49 27.61 31.92±0.04 59.21±1.87

Test 15.64 26.30 4.91±0.00 56.85±1.32

rel-stack badges-class
Val 11.59 20.68 1.93±0.13 79.97±0.05

Test 10.49 18.34 2.51±0.00 82.83±0.18
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Table 14: Autocomplete regression R2 results on RELBENCH. Regression uses the R2 metric
(higher is better). Best values are in bold.

Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-amazon review-rating
Val −20.848 −0.006 −0.364 −20.848 −20.848 −0.364±0.000 −0.356±0.012

Test −22.579 −0.014 −0.341 −13.313 −13.313 −0.341±0.000 −0.331±0.013

rel-event users-birthyear
Val −55012.323 −0.047 −0.216 −55012.323 −55012.323 0.004±0.004 0.008±0.036

Test −64803.758 −0.121 −0.395 −64803.758 −64803.758 −0.192±0.108 −0.030±0.040

rel-f1
qualifying-position

Val −3.267 −0.018 −0.030 −3.267 −3.267 0.153±0.003 0.015±0.009

Test −3.214 −0.002 −0.001 −3.214 −3.214 −0.953±0.039 0.015±0.010

results-position
Val −3.123 −0.100 −0.107 −3.123 −3.123 0.283±0.006 0.440±0.026

Test −3.148 −0.176 −0.219 −3.148 −3.148 −2.437±0.053 0.394±0.039

rel-hm transactions-price
Val −2.215 −0.065 −0.140 −2.215 −2.215 −0.140±0.000 0.725±0.003

Test −2.329 −0.075 −0.159 −2.329 −2.329 −0.160±0.000 0.736±0.002

rel-ratebeer user-beer-rating
Val −23.411 −0.015 −0.004 −23.411 −23.411 −0.004±0.000 0.448±0.006

Test −34.352 −0.031 −0.003 −34.352 −34.352 −0.014±0.000 0.394±0.010

rel-trial studies-enrollment
Val −0.001 −0.000 −0.001 −0.001 −0.001 −0.001±0.000 −0.000±0.000

Test −0.000 −0.000 −0.000 −0.000 −0.000 −0.000±0.000 −0.000±0.000

Table 15: Autocomplete regression results on RELBENCH. Regression uses the MAE metric (lower
is better). Best values are in bold.

Dataset Task Split Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-amazon review-rating
Val 4.416 0.779 0.584 4.416 4.416 0.584±0.000 0.586±0.003

Test 4.453 0.762 0.547 2.907 2.907 0.547±0.000 0.549±0.004

rel-event users-birthyear
Val 1987.058 5.668 5.885 1987.058 1987.058 5.144±0.006 5.193±0.044

Test 1986.094 5.588 6.198 1986.094 1986.094 5.752±0.164 5.224±0.046

rel-f1

qualifying-position
Val 10.943 5.266 5.280 10.943 10.943 4.411±0.014 5.190±0.023

Test 11.142 5.358 5.342 11.142 11.142 7.048±0.067 5.312±0.023

results-position
Val 8.587 4.251 4.257 8.587 8.587 3.167±0.014 2.779±0.069

Test 9.504 4.822 4.877 9.504 9.504 8.377±0.080 3.139±0.104

rel-hm transactions-price
Val 0.034 0.015 0.015 0.034 0.034 0.015±0.000 0.004±0.000

Test 0.034 0.015 0.015 0.034 0.034 0.015±0.000 0.004±0.000

rel-ratebeer beer_ratings-total_score
Val 3.444 0.530 0.520 3.444 3.444 0.520±0.000 0.355±0.001

Test 3.470 0.457 0.431 3.470 3.470 0.447±0.000 0.323±0.003

rel-trial studies-enrollment
Val 3782.463 5893.531 3754.731 3782.463 3782.463 3734.843±1.368 3709.484±1.698

Test 17660.073 19949.874 17635.281 17660.073 17660.073 17770.098±72.701 17604.633±1.562

Table 16: Entity binary classification results on RELBENCH. Binary classification uses the
AUROC metric (higher is better). Standard baselines of random choice and majority class both
correspond to AUROC values of approximately 50.00, so we exclude them below. Best values are in
bold.

Dataset Task Split LightGBM GNN

rel-arxiv paper-citation
Val 71.94±0.12 82.45±0.03

Test 71.21±0.13 82.50±0.04

rel-mimic patient-iculengthofstay
Val 53.64±0.28 56.52±0.05

Test 51.81±0.56 55.01±0.11

rel-ratebeer

beer-churn
Val 81.90±0.06 90.47±0.06

Test 76.21±0.12 78.67±0.60

brewer-dormant
Val 76.39±0.10 82.10±0.13

Test 75.79±0.11 80.51±0.17

user-churn
Val 87.02±0.02 96.85±0.26

Test 83.92±18.42 94.27±0.22

D.2 ADDITIONAL REGRESSION METRICS

For regression tasks, the main paper reports R2 to measure each method’s predictive power, while
MAE is reported in Tables 15 and 19 above.

19



Preprint. Under review.

Table 17: Entity multiclass classification results on RELBENCH. Multiclass classification uses the
accuracy metric (higher is better). Best values are in bold.

Dataset Task Split Random Majority LightGBM GNN

rel-arxiv author-category
Val 1.75 8.83 1.95±0.16 52.63±0.08

Test 1.77 9.09 2.01±0.21 50.74±1.01

Table 18: Entity regression R2 results on RELBENCH. Regression uses the R2 metric (higher is
better). Best values are in bold.

Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-amazon
item-ltv

Val −0.025 −0.000 −0.013 −0.247 −0.107 0.002±0.001 0.066±0.003

Test −0.013 −0.000 −0.007 0.030 0.099 0.001±0.000 0.032±0.001

user-ltv
Val −0.084 −0.003 −0.084 0.053 0.095 −0.084±0.000 0.195±0.006

Test −0.092 −0.000 −0.092 0.143 0.168 −0.092±0.000 0.172±0.006

rel-arxiv author-publication
Val −1.579 −0.012 −0.259 0.254 0.236 −0.259±0.000 0.437±0.013

Test −1.572 −0.000 −0.210 −0.010 −0.064 −0.210±0.000 0.249±0.013

rel-avito ad-ctr
Val −0.238 −0.002 −0.095 −0.224 −0.224 −0.032±0.005 0.030±0.017

Test −0.226 −0.004 −0.098 −0.148 −0.148 −0.039±0.004 −0.001±0.020

rel-event user-attendance
Val −0.249 −0.037 −0.249 −0.193 −0.147 −0.249±0.001 −0.045±0.116

Test −0.168 −0.019 −0.168 −0.065 −0.043 −0.168±0.000 0.003±0.096

rel-f1 driver-position
Val −5.715 −0.370 −0.236 −2.866 −2.840 0.150±0.025 0.249±0.008

Test −5.239 −0.119 −0.042 −2.841 −2.849 0.068±0.049 0.039±0.063

rel-hm item-sales
Val −0.017 −0.000 −0.017 0.065 0.053 −0.017±0.000 0.187±0.002

Test −0.017 −0.000 −0.017 0.058 0.042 −0.017±0.000 0.215±0.002

rel-ratebeer user-count
Val −0.037 −0.053 −0.037 0.551 0.547 0.559±0.014 0.526±0.005

Test −0.071 −0.025 −0.071 0.264 0.285 −0.170±0.684 0.625±0.003

rel-stack post-votes
Val −0.028 −0.007 −0.028 0.306 0.285 −0.028±0.000 0.122±0.003

Test −0.034 −0.004 −0.034 0.294 0.272 −0.034±0.000 0.122±0.004

rel-trial
site-success

Val −0.988 −0.005 −0.988 −0.749 −0.809 −0.319±0.077 −0.425±0.059

Test −0.923 −0.001 −0.923 −0.714 −0.751 −0.336±0.087 −0.483±0.110

study-adverse
Val −0.021 −0.002 −0.020 −0.021 −0.021 0.134±0.017 0.066±0.003

Test −0.054 −0.005 −0.050 −0.054 −0.054 0.307±0.039 0.177±0.009

Table 19: Entity regression results on RELBENCH. Regression uses the MAE metric (lower is
better). Best values are in bold.

Dataset Task Split Zero Mean Median Ent. Mean Ent. Med. LightGBM GNN

rel-arxiv author-publication
Val 1.681 0.864 0.681 0.827 0.804 0.681±0.000 0.435±0.008

Test 1.577 0.769 0.577 0.879 0.874 0.577±0.000 0.513±0.008

rel-ratebeer user-count
Val 11.255 28.892 11.255 8.363 7.866 7.065±0.058 5.813±0.031

Test 15.124 29.050 15.124 13.883 13.079 20.350±9.536 7.374±0.102

Table 20: Recommendation results on RELBENCH. Recommendation uses the MAP metric (higher
is better). Best values are in bold.

Dataset Task Split Past Visit Global Pop. LightGBM GNN (2) GNN (4) IDGNN (2) IDGNN (4)

rel-arxiv paper-paper-cocitation
Val 19.01 1.25 12.49±0.60 12.19±0.23 12.96±00.33 25.22±0.09 35.76±0.09

Test 16.51 1.13 11.01±0.43 8.83±0.38 10.46±0.56 22.95±0.07 35.39±0.17

rel-f1 driver-circuit-compete
Val 53.41 55.19 66.06±2.68 3.60±2.11 10.57±8.35 70.70±0.00 74.40±1.03

Test 20.76 50.12 57.77±2.95 9.67±10.56 16.57±11.17 62.32±0.00 76.18±6.59

rel-ratebeer

user-beer-favorite
Val 0.00 2.33 1.24±0.15 2.09±0.15 − 3.09±0.14 3.33±0.09

Test 0.00 1.10 0.67±0.13 0.56±0.22 − 1.21±0.93 1.89±0.09

user-beer-liked
Val 0.00 0.77 0.43±0.02 0.77±0.06 − 0.21±0.01 1.48±0.06

Test 0.00 0.61 0.29±0.04 0.54±0.22 − 0.32±0.03 1.46±0.19

user-place-liked
Val 0.00 0.24 0.24±0.07 1.06±0.17 − 0.88±0.09 2.20±0.24

Test 0.00 0.11 0.08±0.03 1.15±0.34 − 0.60±0.50 1.85±0.30
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Table 21: Task-specific RDL default hyperparameters.

Hyperparameter Task type
Autocomplete Entity classification Entity regression Recommendation

Learning rate 0.005 0.005 0.005 0.001
Maximum epochs 10 10 10 20
Batch size 512 512 512 512
Hidden feature size 128 128 128 128
Aggregation summation summation summation summation
Number of layers 2 2 2 2
Number of neighbors 128 128 128 128
Temporal sampling strategy uniform uniform uniform uniform

D.3 RECOMMENDATION TASK ABLATIONS

The benefit of node position. ID-GNN, which strongly utilizes node position, excels in entity-
specific tasks. For example, we focus on the rel-ratebeer dataset whose recommendation tasks
strongly highlight user-specific preferences. We observed that ID-GNN significantly outperforms
plain GraphSAGE while also being substantially faster to train. This advantage stems from the fact
that recommendation tasks are inherently multi-hop link prediction problems, where node position
and context are crucial, as nodes tend to connect with others in their community. ID-GNN is better at
capturing such node-specific patterns than vanilla GraphSAGE, leading to its superior performance.

Multi-hop recommendation. Recommendation tasks naturally involve multi-hop reasoning, where
predicting a user–item link often requires traversing intermediate tables in the relational schema.
Increasing the number of GNN layers expands the receptive field, allowing the model to aggregate in-
formation from progressively richer neighborhoods. This is particularly beneficial when intermediate
tables contain strong preference signals. In the user-beer-liked task, the Beer Ratings table
includes explicit ratings, subscores, and review text, enabling deeper GNNs to capture collaborative
filtering effects by traversing paths such as User → Ratings → Beer → Ratings → Beer. In such
cases, increasing the number of layers yields substantial performance gains. In contrast, tasks with
feature-sparse intermediate tables (e.g., Favorites, which contains the implicit link between users and
beers with timestamps) tend to benefit less from additional hops, as deeper neighborhoods introduce
weaker or noisier signals.

D.4 EXPERIMENT HYPERPARAMETERS

All experiments for RELBENCH v2 were conducted with minimal parameter tuning. The default
hyperparameters are specified in Table 21. The consistency of these defaults across task types
highlights the robustness of RDL models, which perform well without extensive hyperparameter
optimization.

For the rel-ratebeer recommendation tasks, we adjusted the batch size to 64 when training
two-layer GraphSAGE, two-layer ID-GNN, and four-layer ID-GNN models to accommodate GPU
memory constraints. While four-layer GraphSAGE remains prohibitively memory-intensive under
this setting, all other models were trained successfully with the adjusted configuration.

E BRIDGING TEMPORAL GRAPH BENCHMARK (TGB) AND RELBENCH

Dataset descriptions. tgbl-wiki-v2 captures Wikipedia co-edit interactions over a short
horizon and is naturally bipartite; tgbl-review-v2 is a long-range e-commerce interaction
graph derived from Amazon review activity; tgbl-coin consists of cryptocurrency transactions;
tgbl-comment models a large-scale Reddit comment interaction stream; and tgbl-flight is
a decades-long flight network event log. For node property prediction, tgbn-trade models annual
UN trade interactions, tgbn-genre is a LastFM user–genre interaction stream, tgbn-reddit is a
temporal Reddit hyperlink network, and tgbn-token represents blockchain user–token interactions.
Finally, the heterogeneous family thgl-* includes GitHub interaction streams (thgl-software,
thgl-github), a Reddit interaction stream (thgl-forum), and an app-market interaction stream
(thgl-myket), each with explicit node/edge type constraints.
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E.1 TRANSLATION: TEMPORAL EVENT STREAMS TO RELATIONAL SCHEMAS

Each TGB dataset is provided as a chronological stream of interactions. Our translation materializes
a RELBENCH-style normalized schema in which entities become tables with primary keys and events
become tables whose rows reference entities via foreign keys and include a time column. Across
all translated datasets, we (i) include an explicit timestamp column (event_ts) on time-varying
tables; (ii) avoid storing train/validation/test split columns, and instead store dataset-level cutoffs
(VAL_TIMESTAMP, TEST_TIMESTAMP) as metadata so splits can be derived from timestamps at
load/evaluation time; and (iii) keep only low-dimensional attributes as relational columns (e.g., scalar
weight), while omitting high-dimensional edge message vectors that would otherwise expand into
hundreds of sparse columns.

For dynamic link prediction datasets (tgbl-*), we represent the interaction stream as a single event
table referencing a node table:

nodes(node_id)
events(event_id, src_id, dst_id, event_ts, weight)

For bipartite datasets (e.g., tgbl-wiki-v2), we use separate entity tables src_nodes(src_id)
and dst_nodes(dst_id) to preserve type constraints and enable type-correct negative sampling.

For temporal heterogeneous datasets (thgl-*), we materialize one entity table per node type and
one event table per edge type:

nodes_type_t(node_type_t_id) for each node type t.
events_edge_type_e(event_id, src_id, dst_id,
event_ts, weight) for each edge type e.

This schema-first representation preserves the semantics of typed relations and makes relation-
conditioned tasks and evaluation natural in RELBENCH.

For dynamic node property prediction datasets (tgbn-*), targets are time-varying and often sparse.
To avoid storing dense label vectors, we represent supervision as normalized label events:

labels(label_id)
label_events(label_event_id, src_id, label_ts)
label_event_items(item_id, label_event_id, label_id,
label_weight)

This preserves the full supervision signal while keeping storage proportional to the number of
non-zeros.

E.2 EFFICIENT STORAGE AND LOADING: PARQUET + DISK-BACKED CSR

A central engineering challenge in translating TGB to RELBENCH is scale: several datasets contain
on the order of O(107–108) temporal events. Naïvely materializing the full event log as an in-memory
edge list (e.g., a global edge_index) is prohibitive on commodity CPU machines, so we rely on
columnar storage (parquet) together with disk-backed sparse graph caches. We store each table
as a separate parquet file in the standard RELBENCH Database.save() layout. This provides
columnar storage for fast projection to only the columns required by a given model, and row-group
metadata that supports efficient sequential scans without loading entire tables into memory. For
thgl-* datasets with many edge types, we additionally export each events_edge_type_*
table using a streaming/chunked parquet writer. This avoids materializing massive intermediate
dataframes per relation and keeps the conversion pipeline memory-bounded even when the total
number of events is large.

To train sampled GNN baselines at scale, we build and cache CSR (compressed sparse row) adjacency
representations directly from parquet scans. Concretely, we store indptr and indices arrays
(and, when needed, aligned per-event arrays such as timestamps and weights) as memory-mappable
.npy artifacts. With CSR, neighbor sampling reduces to lightweight slicing operations over these
arrays, enabling mini-batch training without ever holding the full graph in system memory. For
relational baselines, we use an “event-as-node” message passing graph: each event row becomes a
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Algorithm 1 Streaming CSR construction from parquet event logs (sketch).

Require: Parquet event table with columns src_id, dst_id, event_ts; cutoff time τ .
Ensure: CSR adjacency arrays indptr, indices for events with event_ts ≤ τ .

1: Pass 1: Scan parquet in large row batches; filter rows by event_ts ≤ τ ; accumulate per-node
degree counts.

2: Build indptr by prefix-summing degrees.
3: Pass 2: Re-scan parquet in batches; filter by event_ts ≤ τ ; write neighbors into indices

using indptr offsets.
4: Optionally: symmetrize for undirected message passing; cache per-event arrays (event_ts,
weight) aligned with indices.

node connected (via PK/FK edges) to its incident entity rows. We build node→event CSR adjacencies
per entity table and unify per-event arrays. This makes relational message passing scalable while
remaining faithful to the normalized schema.

E.3 BASELINES AND EVALUATION PROTOCOL

We benchmark three complementary model families on the translated TGB datasets, spanning
graph-native GNNs, relational (PK/FK) GNNs, and temporal sequence models.

GraphSAGE (projected-edge graph; TGB-style). We treat each interaction event as an edge from
src to dst and train a sampled two-layer GraphSAGE encoder using disk-backed CSR adjacency
built from parquet scans. This baseline is graph-native in the sense that the event log is directly
interpreted as a temporal edge stream over a single (or bipartite) node set.

GraphSAGE (event-as-node relational graph; RDL-style). We represent each event row as its
own node and perform message passing over the induced PK/FK graph that connects entity rows to
event rows (“RelEventSAGE”). This baseline is schema-faithful: neighborhoods and aggregation
follow the relational structure rather than collapsing the database into a single projected graph.

TGN + attention (temporal baseline). We train a temporal graph network with a lightweight
attention-based embedding module that consumes the chronological event stream (or equivalently,
the exported parquet event tables) under controlled compute budgets. This baseline captures temporal
dynamics via memory and time encoding, and is directly comparable to the GNN baselines under the
same split and leakage constraints.

Metrics. For tgbl-* and thgl-* we report sampled-negative MRR@100 (higher is better) to
keep a single, consistent ranking metric across model families and schema variants. For tgbn-*
we report the official NDCG@10 (higher is better), and additionally report sampled-negative MRR
for consistency across task families. For existing RELBENCH recommendation tasks we report the
official MAP@10 used in the RELBENCH evaluation code.

Leakage control. All splits are derived from dataset-level VAL_TIMESTAMP and TEST_TIMESTAMP
cutoffs, and we do not store split membership as a database column. When comparing baselines,
we ensure that message passing and neighborhood construction only use historical events up to the
validation cutoff (i.e., adj=val) unless explicitly stated otherwise, preventing test evaluation from
incorporating post-cutoff interactions.

E.4 RESULTS

Tables 22, 23, and 24 summarize baseline performance on the translated TGB datasets. Table 25
reports a small reference point on existing RELBENCH recommendation tasks using GraphSAGE and
the attention-based TGN baseline.

Discussion. Across tgbl-*, the comparison between projected-edge GraphSAGE and event-as-
node relational GraphSAGE highlights when the relationalization of events is beneficial: datasets with
informative event records (e.g., heavy-tailed weight and rich event semantics) tend to favor the event-
as-node representation (tgbl-coin, tgbl-comment), while datasets that are closer to “pure”
structural proximity under our compact schema (and without high-dimensional message features) can
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Table 22: Dynamic node property prediction (tgbn-*) on translated TGB datasets. We report
validation and test performance for GraphSAGE and a sampled neighbor-attention variant (“Attn”),
using NDCG@10 (official) and sampled-negative MRR.

GraphSAGE Attn (sampled neighbor attention)

Dataset Val MRR Val NDCG@10 Test MRR Test NDCG@10 Val MRR Val NDCG@10 Test MRR Test NDCG@10

tgbn-trade 0.9522 0.3769 0.9393 0.3765 0.9102 0.3849 0.8635 0.3401
tgbn-genre 0.8682 0.6169 0.8591 0.6054 0.6664 0.4263 0.6552 0.4139
tgbn-reddit 0.7804 0.6474 0.7555 0.6146 0.4326 0.3413 0.4067 0.3098
tgbn-token 0.4043 0.3763 0.3405 0.3098 0.2451 0.2303 0.2101 0.1935

Table 23: Dynamic link prediction (tgbl-*) on translated TGB datasets (sampled-negative
MRR@100). We compare (i) a graph-native projected-edge GraphSAGE baseline, (ii) an event-as-
node relational GraphSAGE baseline (RelEventSAGE), and (iii) a TGN + attention baseline trained
from exported parquet under bounded budgets. Best test results per dataset are in bold.

GraphSAGE (projected edges) GraphSAGE (event-as-node) TGN+Attn

Dataset Val Test Val Test Val Test

tgbl-wiki-v2 0.4203 0.3782 0.2757 0.2517 0.3998 0.3384
tgbl-review-v2 0.0932 0.0852 0.2596 0.2317 0.2528 0.2457
tgbl-coin 0.4541 0.3932 0.6064 0.5554 0.5604 0.5067
tgbl-comment 0.2089 0.1536 0.2896 0.2305 0.2960 0.2098
tgbl-flight 0.7082 0.6737 0.6357 0.5915 0.4838 0.4566

Table 24: Temporal heterogeneous link prediction (thgl-*) on translated TGB
datasets (sampled-negative MRR@100). We compare event-as-node relational GraphSAGE
(RelEventSAGE) against TGN + attention. Best test results per dataset are in bold.

GraphSAGE (event-as-node) TGN+Attn

Dataset Val Test Val Test

thgl-software 0.1388 0.1206 0.1367 0.1290
thgl-forum 0.4635 0.4401 0.3452 0.3527
thgl-myket 0.7264 0.7084 0.6614 0.6648
thgl-github 0.0725 0.0666 0.0782 0.0767

Table 25: Reference recommendation results on existing RELBENCH datasets (smoke runs). We
report validation MAP@10 for GraphSAGE and TGN+Attn on three RELBENCH recommendation
tasks.

Dataset Task Metric GraphSAGE TGN+Attn

rel-f1 driver-race-compete val MAP@10 0.06048 0.27821
rel-hm user-item-purchase val MAP@10 0.0006649 0.0009053
rel-stack post-post-related val MAP@10 0.0024797 0.00017857

favor the projected-edge baseline (tgbl-wiki-v2, tgbl-flight). On thgl-*, the attention-
based temporal baseline is competitive and sometimes best (thgl-software, thgl-github),
while relational GraphSAGE remains strong on datasets where type-correct relational neighborhoods
provide a high-signal inductive bias (thgl-forum, thgl-myket). Finally, Table 25 provides a
small anchor on existing RELBENCH recommendation tasks: even with minimal tuning, the attention-
based temporal baseline can substantially improve MAP on some datasets (rel-f1), but does not
uniformly dominate across domains (rel-stack).
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