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Abstract
Relational Foundation Models (RFMs) facilitate
data-driven decision-making by learning from
complex multi-table databases. However, the di-
verse relational databases needed to train such
models are rarely public due to privacy constraints.
While there are methods to generate synthetic tab-
ular data of arbitrary size, incorporating schema
structure and primary–foreign key connectivity
for multi-table generation remains challenging.
Here we introduce PLUREL, a framework to syn-
thesize multi-tabular relational databases from
scratch. In a step-by-step fashion, PLUREL mod-
els (1) schemas with directed graphs, (2) inter-
table primary-foreign key connectivity with bipar-
tite graphs, and, (3) feature distributions in tables
via conditional causal mechanisms. The design
space across these stages supports the synthesis
of a wide range of diverse databases, while being
computationally lightweight. Using PLUREL, we
observe for the first time that (1) RFM pretraining
loss exhibits power-law scaling with the number
of synthetic databases and total pretraining tokens,
(2) scaling the number of synthetic databases im-
proves generalization to real databases, and (3)
synthetic pretraining yields strong base models
for continued pretraining on real databases. Over-
all, our framework and results position synthetic
data scaling as a promising paradigm for RFMs.

1. Introduction
Large-scale publicly available pretraining data has been cen-
tral to the success of Foundation Models (FMs) across text,
image, video, speech, and other modalities (Bommasani
et al., 2022; Hoffmann et al., 2022; Achiam et al., 2023;
Zhou et al., 2024; Team et al., 2025; Yang et al., 2025).
Similar progress has recently emerged for tabular founda-
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tion models, which demonstrate strong generalization across
datasets using large-scale pretraining data (Hollmann et al.,
2023; 2025; Spinaci et al., 2025; Zhang et al., 2025). How-
ever, multi-table relational databases, which constitute the
primary modality for most enterprise data worldwide, re-
main largely inaccessible because of privacy and business
constraints (Dove & Phillips, 2015; Cohen & Mello, 2018;
Hoofnagle et al., 2019). This lack of public training data
makes the development of RFMs challenging.

RFMs provide a novel paradigm for learning on relational
databases and performing numerous predictive tasks through
a single pretrained model via in-context learning. Tasks such
as user churn prediction in e-commerce databases, fraud
detection in financial databases, and inventory forecasting
in industrial product databases can all be executed within
seconds without developing individual task-specific mod-
els (Fey et al., 2025; Dwivedi et al., 2025; Ranjan et al.,
2025). Just as LLMs have achieved strong performance
across diverse text tasks by scaling training data to tens
of trillions of tokens (Liu et al., 2025; Yang et al., 2025),
RFMs may achieve similar gains with increasing data scales.
Recent RFMs, despite showing promising capabilities such
as zero-shot predictions (Ranjan et al., 2025; Wang et al.,
2025), are trained on only a few publicly available databases
and this lack of diversity hinders the benefits of further data
scaling. Thus, there is a pressing need to address the lack of
diverse, large-scale databases that can facilitate the develop-
ment of next-generation RFMs.

Single-table models address this problem with synthetic ta-
ble generation techniques, primarily using Structural Causal
Models (SCMs) (Hollmann et al., 2023; 2025; Grinsztajn
et al., 2025). However, a collection of isolated tables
cannot sufficiently model the complexities of real-world
databases (Kent, 1981), as they omit the primary-foreign
key relationships between rows across different tables. Such
connectivity is crucial as it determines the locality of infor-
mation at multiple levels (i.e., at tabular and row levels) and
shapes the joint data distributions that RFMs are intended to
learn. The main difficulty in extending SCMs to relational
data lies in incorporating the row-level primary-foreign key
connectivity with the table-specific SCM mechanisms. Re-
cent work by Hoppe et al. (2025) couples multiple SCMs
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Figure 1. (Left) Pretraining loss L scales as a power law with both (1) the number of synthetic databases N and (2) the pretraining dataset
size S, when not bottle-necked by the other. See Section 3.1 for details. (Right) On real-world predictive tasks, PLUREL-based synthetic
pretraining followed by continued pretraining on real data outperforms real data pretraining alone. See Section 3.3 for details.

through a common node for relational data generation. How-
ever, this simplifies the process into a single SCM-based
data generation and fails to model the primary-foreign key
connectivity. Alternative approaches such as the Synthetic
Data Vault (Patki et al., 2016), GAN-based (Gueye et al.,
2023), and diffusion models (Pang et al., 2024; Hudovernik,
2024; Ketata et al., 2025) can capture characteristics of
real-world databases, but cannot generate novel ones from
scratch without relying on existing real-world examples.

To address these limitations, we introduce PLUREL1 , a light-
weight framework for synthesizing relational databases from
scratch that captures the multi-scale structural properties es-
sential for training RFMs. We develop PLUREL through
three levels of abstraction. (1) At the schema level, we
design tables and their directed relationships to establish
the database structure. (2) At the connectivity level, we
model the bipartite relationships between tables linked via
primary–foreign (P→F) relationships to populate the foreign
key columns. (3) At the feature level, we employ Structural
Causal Models (SCMs) combined with a conditional table
generation process to incorporate temporal patterns and gen-
erate table rows. We formalize PLUREL in its most general
form and demonstrate its effectiveness by pretraining Re-
lational Transformer (RT) (Ranjan et al., 2025) models on
billions of tokens from PLUREL-generated synthetic data.

By removing any data bottlenecks, PLUREL allows us to
conduct scaling analyzes with respect to the number of
synthetic databases (diversity) and total pretraining tokens
(size). We observe power law scaling (Figure 1) finding that
RT’s performance improves predictably with both axes. Fur-
ther, the scaling improvements show consistent zero-shot
transfer to real-world datasets, as demonstrated by fore-
casting tasks on unseen RelBench (Robinson et al., 2024)
datasets. Synthetic pretraining synergizes well with con-
tinued pretraining on real data, showing up to +7.4% and
+5.2% absolute improvements on classification AUROC
and regression R2 respectively.

1Plurel is an archaic form of the word plural, meaning “more
than one”. In this paper, PLUREL refers to generating “more than
one” (possibly even an unlimited number) of relational databases.

2. Synthetic Relational Data Generation
We introduce the PLUREL framework through a concrete
real-world example. Consider a relational database (RDB)
in the e-commerce domain with entity tables such as
Users and Items, along with activity tables such as
Transactions. The database schema captures directed
relationships between tables, such as linking Items to
Transactions through a foreign key. The causal mech-
anisms generating the rows in this e-commerce RDB are
driven by human behavior and external events over time.
For instance, increased demand for winter clothing during a
Black Friday sale manifests as a surge in sweater purchases.
Such events induce many primary-foreign key links (P→F)
from a single sweater row in Items (P) to multiple pur-
chase rows in Transactions (F). Through these cross-
table links, the database jointly captures attributes of entities
(e.g., item price, user age) and activities (e.g., purchase time,
quantity), distributing information across connected tables
rather than isolating it within a single table.

In PLUREL, we generate synthetic databases by leverag-
ing the abstractions mentioned above in three stages: (i) a
schema is represented as a directed graph G, where nodes
correspond to a set of tables T and edges represent inter-
table connectivity, (ii) event-driven dynamics are modeled
through P→F bipartite connectivity between rows across
tables, (iii) diverse attributes and joint data distributions
are captured using Structural Causal Models (SCMs) when
generating table rows. See Figure 2 for an overview.

2.1. Schema Generation via Directed Graphs

The schema determines the number of foreign key columns
in each table and thereby controls information locality at
the tabular level of an RDB. We sample G from a family
of random directed acyclic graphs (DAGs) PG. We do
not support cycles, which is a limitation (Appendix A).
A topological ordering of G specifies the table generation
order: tables at the first level are synthesized independently,
while tables at subsequent levels are generated conditionally
on the feature columns of their parent tables through P→F
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Figure 2. The PLUREL framework. Stage 1 generates a schema by sampling a directed graph G and populating the metadata with row and
column counts. In Stage 2, the foreign key columns are populated using a bipartite graph between rows of parent–child table pairs, each
edge representing a primary–foreign key (P→F) link. In Stage 3, we follow a topological ordering of tables in G and leverage Structural
Causal Models (SCMs) conditioned on parent tables, with temporal patterns in source node inputs to populate the feature columns.

links. Based on their connectivity patterns in G, we further
partition tables into two categories. Entity tables correspond
to nodes with out-degree at least one, while the remaining
nodes are treated as activity tables. The number of rows and
feature columns for each table is sampled independently
from a distribution of values. Together, these design choices
define the top-level schema configuration, including the
number of tables, their directed relationships, table types,
and associated metadata such as row and column counts.

2.2. Foreign Key Generation via Bipartite Graphs

Once the schema is established by G, we move to the next
stage and design the bipartite row-level connectivity be-
tween pairs of tables. Each table T ∈ T is characterized
by a set of feature columns, a primary key column, and a
set of (optional) foreign key columns. A parent table of T
is a predecessor of node T in G, denoted as T̃ ∈ Pr(T,G).
The primary key indexes the structured information within
a row of table T , while the foreign key references a row in
a parent table T̃ . Given a fixed number of rows per table,
we treat row indices as primary key values for simplicity.
This formulation allows the foreign key column of T to
be populated by sampling primary keys from T̃ (see Stage
2 in Figure 2). Recent works (Hudovernik et al., 2025)
have shown that real-world databases exhibit a hierarchical
primary–foreign key connectivity pattern between pairs of
tables. Motivated by this observation, we adopt a clustering-
based strategy to populate foreign key columns and control

row-level information locality in an RDB. In particular, we
cluster the rows of T, T̃ into blocks and employ a Hierar-
chical Stochastic Block Model (HSBM) (Peixoto, 2014) to
determine the bipartite connectivity between the rows. We
repeat this procedure for all table pairs (T, T̃ ) in the RDB.

HSBM based connectivity. Without loss of generality, let
a table T contain N primary keys (rows) and one of its
parent tables T̃ contain M primary keys. We partition these
IDs into a hierarchical collection of blocks. A hierarchy
HT = (B1

T , . . . , B
L
T ) for table T is defined by the number

of levels L and the number of blocks (Bl
T ) at each level

l ∈ [L] = {1, . . . , L}. For example, HT = (3, 6) specifies
two-levels with B1

T = 3 blocks at level 1 and B2
T = 6

blocks at level 2. Using hierarchies HT and HT̃ with the
same number of levels L, we control row-level connectivity
from T̃ to T via level-wise probabilities P[l], l ∈ [L], as:

P[l] =

 p1,1 · · · p1,Bl
T

...
. . .

...
pBl

T̃
,1 · · · pBl

T̃
,Bl

T

 . (1)

Let row i in table T be assigned a level-wise block vector
bi = (b1i , . . . , b

L
i ), where bli ∈ [Bl

T ]. Similarly, let row j in
table T̃ be assigned b̃j = (̃b1j , . . . , b̃

L
j ), where b̃lj ∈ [Bl

T̃
].

The probability that row j of T̃ links to row i of T is:

P(j → i) =
sij∑M
k=1 sik

, sij :=

L∏
l=1

P[l]
[
b̃lj , b

l
i

]
. (2)
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Remark. In the above formulation, if one sets HT = (1),
HT̃ = (1) and P[1] = [1], then all primary keys of the
parent table T̃ are equally likely of being used as foreign
keys in table T . This is a setting in which row generation for
T depends uniformly on all the rows of T̃ . The flexibility in
the design of P thus allows rows of T to depend either on
many parent rows in T̃ or on a small subset.

2.3. Feature Generation via Structural Causal Models

In the final stage, we leverage Structural Causal Models
(SCMs) (Pearl, 2009; Hollmann et al., 2023; 2025) to gen-
erate the cell values in tables and complete the synthesis.
We associate each table T ∈ T with its own SCM (see
Stage 3 in Figure 2). An SCM is defined by a causal graph
CT = (VT , ET ) sampled from a prior PC , where nodes rep-
resent variables and directed edges encode cause-and-effect
relationships among them. Each node is associated with
a mechanism zi = Hi (Pr(vi, CT ),ui), where Pr(vi, CT )
are the predecessors of node vi ∈ V , ui is an exogenous
input representing latent factors not explicitly modeled in
the causal graph, and Hi is a deterministic (non-linear) func-
tion. The feature columns of T are represented by a subset
of nodes VF

T ⊆ VT in the causal graph CT of the SCM. The
nodes without incoming edges are treated as source nodes
VS
T ⊂ VT . A realization of an SCM corresponds to one

forward pass through CT with fixed exogenous inputs.

Conditional row generation. The tabular data synthesis
follows the topological sort ordering of G, and ensures that
all the parent tables of T have been synthesized before it.
The first generation of tables in the topological sort of G will
not have foreign key columns. For such T , we obtain the
cells of a single row by (1) initializing source nodes VS

T , (2)
propagating their values through the causal graph CT , and
(3) collecting the values at feature nodes VF

T . In cases where
T has foreign key columns, the feature nodes VF

T̃
of SCMs

associated with all of its parent tables T̃ ∈ Pr(T,G) are
also considered. Formally, zi can be generalized as follows:

zi = Hi

(
∪T̃∈Pr(T,G)V

F
T̃
,Pr(vi, CT ),ui

)
. (3)

When T does not have foreign-key columns, then the node
set represented by

⋃
T̃∈Pr(T,G) V

F
T̃

is empty (∅) and zi in
Equation (3) specializes to the simpler formulation above.

Data types. Feature columns in tables span multiple data
types, including numeric, categorical, and boolean attributes.
To capture this diversity, we associate each node in an SCM
with either a numeric or categorical type with equal proba-
bility, enabling the construction of data-type-aware causal
mechanisms. In practice, real-world databases often contain
multimodal and semi-structured fields, including text, im-
ages, audio, geospatial attributes, JSON/XML objects, as
well as hashed, tokenized, or encrypted columns. While our

Figure 3. Synthesizing RDBs with PLUREL results in diverse data
distributions across feature column values.

current implementation focuses on numeric and categorical
features, the framework can naturally extend to these richer
data modalities by augmenting the SCM mechanisms.

2.3.1. MODELING TEMPORAL PATTERNS

Features in real-world databases often exhibit correlations
across rows due to temporally related events. We incor-
porate such temporal correlations across rows in PLUREL
by relying on the exogenous inputs ui of source nodes.
We do so by modeling u

(r)
i for a row with index/primary-

key (r) as a combination of trend, cyclical, and fluctuation
components. Furthemore, this design avoids the unrealistic
assumption that features associated with identical foreign
keys are independent and identically distributed (i.i.d.).

Definition 2.1. The trend : R→ R is a power-law func-
tion with exponent α ∈ R, a scale parameter s ∈ R, an
offset o ∈ R, an upper-bound b ∈ R, and total row count
R ∈ R as: trend (r) = min

(
s ∗
(
r
R

)α
+ o, b

)
.

Definition 2.2. The cycle : R → R is defined by the
periodicity p ∈ R, a scale parameter s ∈ R, a lower-
bound l ∈ R, and an upper-bound b ∈ R as: cycle(r) =

min
(
max

(
s ∗ sin

(
πr
p

)
, l
)
, b
)

.

Definition 2.3. The fluc : R → R is defined by a ran-
dom variable sampled i.i.d from the normal distribution
n ∼ N(0, 1) ∈ R, a lower-bound l ∈ R, an upper-bound
b ∈ R, and a fluctuation scale λn ∈ R as: fluc(r) =
min (max (λn ∗ n, l) , b).

Numerical inputs. Let g(r) denote the average of the trend,
cycle, and fluc functions for each row r:

g(r) = avg (trend(r),cycle(r),fluc(r)) . (4)

For numerical source nodes VS , we set u(r)
i = g(r), and

employ exogenous inputs that exhibit constant, linear, sub-
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linear, and super-linear trends, along with cyclical patterns
of varying periodicity and bounded fluctuations.

Categorical inputs. For source nodes associated with the
categorical type, we restrict values to the set {1, . . . , C}.
The choice of C is sampled independently for each cate-
gorical node. To extend temporal structure to this setting,
we associate each category c ∈ [C] with its own numerical
temporal function gc(r). For each row r, we then sample
u
(r)
i ∼ Categorical(p(r)), where p(r) = Softmax(g(r)),

and g(r) = (g1(r), . . . , gC(r)). This design allows arbi-
trary temporal resolutions, from seconds to centuries, to be
associated with the rows of tables. We represent such time
ranges using the timestamp column in activity tables, thus
incorporating temporal data types in synthetic RDBs.

2.3.2. SCM MECHANISMS

For every SCM mechanism zi associated with table T , the
data types of the nodes inform the design of Hi in Equation
(3). In particular, Hi follows a projection–reconstruction de-
sign. First, the values of the predecessor nodes of the same
SCM (Pr(vi, CT )) as well as realizations of feature nodes
in the parent SCM

(⋃
T̃∈Pr(T,G) V

F
T̃

)
are projected into a

shared latent space. These representations are aggregated
and mapped back to the vi node’s data type.

Projecting nodes. Let vj ∈ Pr(vi, CT ) denote a predeces-
sor of node vi in the causal graph CT . If vj contains a nu-
meric value, a randomly initialized MLP projects the value
from R into a dhid-dimensional latent space Rdhid . If vj con-
tains a categorical value (c ∈ [C]), we first select the cth row
of a randomly initialized embedding matrix E

vj
proj ∈ RC×dhid

and then transform it using an MLP to obtain a latent rep-
resentation in Rdhid . The same procedure is applied to the
feature nodes of the parent table’s SCM realizations. Fol-
lowing Equation (3), this projection step is applied to all
SCM nodes in

⋃
T̃∈Pr(T,G) V

F
T̃

and Pr(vi, CT ).

Reconstructing nodes. For notational simplicity, we de-
note the unified set of relevant SCM nodes

⋃
T̃∈Pr(T,G) V

F
T̃

and Pr(vi, CT ) byM(i). The exogenous input ui ∈ Rdhid

for such nodes is sampled from a distribution ξi and com-
bined with the projected representations ek ∈ Rdhid , k ∈
{1, · · · , |P(i)|} to form a weighted aggregate latent vector:

ei = wuui +

|M(i)|∑
k=1

wkek. (5)

Here wu ∈ R controls the influence of the exogenous in-
put, while wk ∈ R controls the contribution of projected
parent nodes. If node vi is assigned a numeric type, the
aggregated representation ei ∈ Rdhid is reconstructed into
R using a randomly initialized MLP. If vi is assigned a cat-
egorical type, ei is first transformed by an MLP to obtain

e′i ∈ Rdhid and then mapped to a discrete category using a
randomly initialized embedding matrix Evi

rec ∈ RC×dhid via
argmax(Evi

rece
′
i). The reconstructed values of feature nodes

VF
T are written to their corresponding table cells in T .

Summary of synthesis. A single SCM realization generates
the cell values for one row of table T . Repeating this execu-
tion for all the rows completes the table generation process.
Extending this to all tables based on G synthesizes the entire
RDB. As real-world RDBs tend to miss cell values due to
various data collection errors, we also implant NULL values
in randomly selected cells of feature columns.

3. Experiments
We pretrain the Relational Transformer (RT) on billions of
synthetic tokens to study data scaling behavior. We focus on
how PLUREL generated synthetic data diversity (number of
RDBs) and dataset size (token count) affect pretraining loss
and zero-shot generalization. We report scaling trends, zero-
shot results on real-world tasks from RelBench (Robinson
et al., 2024), and the benefit of synthetic pretraining for
continued pretraining on low-diversity real-world data.

RelBench Datasets. We use the following 6 datasets
from RelBench: rel-amazon, rel-avito, rel-f1,
rel-hm, rel-stack and rel-trial as our real-world
data. Each dataset comprises the relational database and the
forecasting task tables. The task tables are curated using
manually designed SQL operations on the database tables.

Synthetic Datasets. PLUREL employs a distribution of
hyperparameters for synthesizing RDBs. For example: G is
sampled from a prior of Barabasi-Albert (Barabási &
Albert, 1999), Reverse Random-Tree (Prufer, 1918),
and Watts-Strogatz (Watts & Strogatz, 1998) random
graphs. These priors model a variety of table relation-
ships with the presence of hub tables, a strictly hierarchical
schema, and tight local clustering. For the MLPs used to
project (or reconstruct) node values in SCM mechanisms,
the activations are sampled uniformly from {relu, elu,
silu, softsign, tanh}. The complete list is presented
in Table 2. The synthesis of a single RDB is thus controlled
only by a seed parameter and results in diverse distributions
across feature columns (see Figure 3).

Masked token prediction (MTP) and autocomplete tasks.
RT treats each table cell as a token and is pretrained using
the masked token prediction (MTP) objective over numeric
and boolean feature cells. For each masked cell, the input
context is constructed from cells in the same row and col-
umn, as well as neighboring rows connected through P→F
and F→P links. We use Huber loss for numeric targets
and CrossEntropy loss for boolean targets. In RelBench,
autocomplete tasks mask cells in existing tables to evaluate
property prediction, while forecasting tasks mask cells in

5



PLUREL: Synthetic Data unlocks Scaling Laws for Relational Foundation Models

(a) Mean 0-shot test AUROC (%) (↑) (b) Mean 0-shot test R2 (%) (↑) (c) Validation loss (↓) on real data (RelBench)

Figure 4. Validation loss and zero-shot performance on RelBench tasks. The synthetic pretraining dataset sizes (in billions of tokens) are
varied along with the number of PLUREL RDBs to obtain the scaling curves. (↓)/(↑) indicates that lower/higher values are better.

curated task tables to predict future outcomes. For example,
masking cells in the item-churn table of rel-amazon
trains the model to predict whether a product will receive re-
views in the next three months. Since PLUREL does not rely
on curated task tables, masking cells in the synthetic tables
naturally mirrors both property prediction and forecasting.

Architecture and dowstream evaluation. We use the 12
layer RT architecture as proposed by Ranjan et al. (2025)
and make the following changes. (1) We do not use the ‘full’
attention mask, considering its limited utility, and reduce the
compute overhead (Appendix C). (2) We incorporate Query-
Key Normalization to the relational attention layers to sta-
bilize training and avoid early overfitting (Appendix D.2).
We measure the zero-shot performance of RT on RelBench
through the 10 binary classification tasks using AUROC,
and the 8 regression tasks using R2 score.

Hyperparameters and compute resources. We use a batch
size of 128, context length of 1024, BFS sampling width
of 128, and use the AdamW optimizer with weight decay
0.1, a peak learning rate of 5× 10−4, with a linear warmup
ratio of 0.2 and a linear decay to zero for the remaining
steps. Experiments are conducted on 1 Blackwell B200
GPU, where one pretraining run takes around 3 hours.

3.1. Scaling Laws for Data Diversity and Size

We consider two axes of data scaling: (1) N : the number
of synthetic RDBs (diversity), (2) S: pretraining tokens
extracted from those RDBs (size). The validation loss L is
the mean of CrossEntropy loss for classification and Huber
loss for regression over held-out synthetic RDBs. Fixing the
pretraining hyperparameters as above and marginalizing out
randomness from training and synthetic data generation, the
validation loss L(N,S) of the final checkpoint is a function
of both N and S. Further, we define:

L(N) = min
S

L(N,S) and L(S) = min
N

L(N,S).

We hypothesize that the loss has a power law dependency on
diversity N when not bottle-necked by size S, and similarly

on size S when not bottlenecked by diversity N . Formally,
with AN/S , αN/S , CN/S ∈ R to be fit on the data:

L(N) = ANN−αN + CN (Diversity power law) (6)

L(S) = ASS
−αS + CS (Size power law) (7)

To fit the 6 power law parameters, we perform a sepa-
rate synthetic pretraining run for every combination in
the grid (N,S) ∈ {8, 16, 32, 64, 128, 256, 512, 1024} ×
{0.5B, 1B, 2B, 4B, 8B, 16B, 32B}. We measure the mean
loss L(N,S) of the final checkpoint on a held-out set of
10k contexts (5k each for zero-shot classification and re-
gression) in total from 100 held-out synthetic RDBs. We
compute L(N) and L(S) by taking the minimum loss values
from this grid, and fit the parameters with the curve fitting
procedure from Kaplan et al. (2020) keeping N = 1024
and S = 32B points held-out. Thus, we fit 3 parameters
(AN , αN , CN ) on 7 (N,L(N)) points, and the other 3 pa-
rameters (AS , αS , CS) on 6 (S,L(S)) points. Finally, we
check the predictive power of our scaling laws on the held-
out points for N = 1024 and S = 32B. Figure 1 shows the
scaling curves, including the fitted parameters.

Observations. We see that points on the scaling frontier
roughly lie on the fitted line in the log-log plot between
excess loss and N or S, validating our power law hypothesis.
Further, the extrapolated line makes a reasonable prediction
at 2× the data scale. We also note that to obtain the best
loss, both N and S need to be scaled in tandem, as scaling
N for fixed S, or scaling S for fixed N , both result in non-
monotonic curves as shown by the faded lines in Figure 1.

Remark. We note that a joint power-law of the form

L(N,S) = ANN−αN +ASS
−αS + C

as used by Hoffmann et al. (2022) and Ma et al. (2025) is
not suitable in our case, as L is not monotonic in N or S.
This can be seen in the U-shaped faded curves in Figure 1,
which correspond to L(N) and L(S) for different values of
S and N respectively. Intuitively, increasing diversity N for
fixed size S leads to underfitting, and increasing size S for
fixed diversity N leads to overfitting.
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3.2. Generalization to Real Datasets

The masked token prediction (MTP) tasks on synthetic
RDBs promote broad relational understanding in RFMs,
enabling generalization beyond synthetic database specific
patterns to unobserved databases. We demonstrate this be-
havior by computing the MTP loss on the validation split
of all the 18 RelBench tasks under the same synthetic scal-
ing setup as Section 3.1. Figure 4c shows that a lack of
diversity with a smaller number of synthetic RDBs results
in undesirable scaling curves for RelBench tasks. Espe-
cially, for the {8, 16, 32} settings, the larger datasets tend
to be suboptimal as the loss curves exhibit a clear upward
trend. However, such behavior is mitigated as the number
increases, and the benefits from scaling the dataset size be-
come evident. Nevertheless, this is saturation of the loss
as RelBench is out-of-distribution for our synthetic data.
Measuring the AUROC (Figure 4a) and R2 (Figure 4b) on
the test splits of RelBench tasks results in similar observa-
tions, where a larger number of synthetic RDBs coupled
with larger datasets can improve the overall performance.

3.3. Continued Pretraining on Real Datasets

Synthetic pretraining yields strong base RT models for
downstream prediction and continued real-data pretraining.
To pretrain on RelBench databases, we follow the leave-
one-DB-out (Ranjan et al., 2025) approach for randomly
initialized and the synthetic pretrained RT model. Specifi-
cally, the model is pretrained six times, each time holding
out one RelBench dataset for evaluation, while forecasting
and autocomplete tasks from the remaining five datasets are
used for MTP-based pretraining. During evaluation, we se-
lect the checkpoint with the highest score on the validation
split (per task) and report its score on the corresponding test
split. We repeat experiments with 3 different seeds to report
the mean and standard error of the metrics per task.

Model selection. As base model for continued pretraining,
we chose the model pretrained on 1024 synthetic RDBs and
4B tokens as it maximizes the worse validation metric out
of R2 and AUROC without continued pretraining. Results
are robust to base models, and sometimes even better for
models worse on this metric (App. D.1), indicating post-hoc
reversal from continued pretraining (Ranjan et al., 2024).

Observations. Table 1 shows that synthetic pretraining
consistently improves zero-shot performance when com-
bined with real-data continued pretraining. On average, Syn-
thetic+Real achieves a +1.2% absolute gain in AUROC and
a +3.0% absolute gain in R2 over the Real only baseline,
reaching up to +7.4% and +5.2% respectively on individual
tasks. Improvements are particularly strong on regression
tasks, where Synthetic+Real outperforms Real only on
7 out of 8 tasks, indicating that synthetic relational diver-
sity is especially beneficial for learning continuous-valued

Dataset Task Real
only

Synthetic +
Real (ours)

Absolute
Gain (%)

Synthetic
only (ours)

AUROC(%) for classification. Higher is better. Majority baseline is 50.0.

rel-amazon user-churn 64.2 65.0 +0.8 64.4
rel-hm user-churn 67.4 66.0 −1.4 63.7
rel-stack user-badge 80.0 82.0 +2.0 81.4
rel-stack user-engage 78.9 86.2 +7.4 82.4
rel-amazon item-churn 67.6 72.5 +4.9 71.0
rel-avito user-visits 57.2 63.4 +6.2 63.5
rel-avito user-clicks 54.7 47.9 −6.8 45.9
rel-trial study-out 54.4 51.8 −2.6 53.8
rel-f1 driver-dnf 80.7 81.0 +0.3 76.7
rel-f1 driver-top3 86.9 88.4 +1.5 82.6

Mean 69.2 70.4 +1.2 68.5

R2(%) for regression. Higher is better. Mean baseline is 0.0.

rel-hm item-sales 16.0 20.0 +4.0 4.4
rel-amazon user-ltv 14.5 18.5 +4.0 9.8
rel-amazon item-ltv 35.3 40.5 +5.2 10.7
rel-stack post-votes 22.3 25.5 +3.2 15.7
rel-trial site-succ 33.7 38.6 +5.0 38.3
rel-trial study-adv 1.9 1.6 −0.3 −0.8
rel-f1 driver-pos 54.3 55.5 +1.2 41.3
rel-avito ad-ctr 3.1 4.9 +1.9 2.5

Mean 22.6 25.7 +3.0 15.2

Table 1. Zero-shot test set results on unseen datasets for differ-
ent pretraining setups. Real only pretraining is done with Rel-
Bench in a leave-one-DB-out setting. Synthetic only pretraining
is done on PLUREL generated synthetic data. Synthetic + Real
involves continued pretraining on RelBench (leave-one-DB-out)
from the checkpoint obtained with Synthetic only pretraining.
First 2 columns report mean over 3 seeds. See Appendix D.1 (Ta-
ble 4) for standard error and results for a different base model.

patterns. For classification tasks, gains are more mixed
but remain positive on average, with large improvements
observed on behavior-driven tasks such as user-engage
and item-ltv. In contrast, Synthetic only underperforms
both baselines on most tasks, highlighting that synthetic data
alone is insufficient for robust zero-shot transfer and that
continued pretraining on real data is critical for distribution
alignment. On certain tasks we observe a slight decrease
in zero-shot performance when starting with synthetic data.
We hypothesize that this is due to the lack of textual infor-
mation and column semantics in PLUREL.

4. Related Work
Foundation Models. In recent years, the machine learning
community has achieved significant advances through the
development of foundation models trained on massive, di-
verse datasets (Bommasani et al., 2022). These models serve
as versatile backbones for continued training and can be di-
rectly applied to new problems in few-shot settings (Zhou
et al., 2024). While vast amounts of publicly crawled text
and image data have enabled the continued advancement of
frontier language and vision models (Achiam et al., 2023;
Team et al., 2025; Yang et al., 2025), a sharp contrast exists
in the relational domain. Relational databases are rarely
public, as they typically contain sensitive user or enterprise
information (Patki et al., 2016). Consequently, concerns
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over data privacy and the lack of truly massive public and
diverse datasets suitable for pretraining have hindered the
development of RFMs. We approach this issue by proposing
a framework capable of generating diverse pretraining data,
free of PII or confidentiality, from scratch.

Synthetic Data and Tabular Foundation Models. Syn-
thetic data offers a promising alternative. Hollmann et al.
(2023) introduces TabPFN, a transformer for in-context
learning on tabular data pretrained on millions of synthetic
tabular datasets. The method proposes a synthetic data-
generating process based on SCMs (Müller et al., 2022)
that is capable of capturing causal relationships between
columns observed in real-world tabular data. Later works
combine SCMs with tree-based data generators using deci-
sion tree (den Breejen et al., 2025) and XGBoost-based (QU
et al., 2025) generators. Zhang et al. (2025) identify two key
properties of these generators that enable strong generaliza-
tion in pretrained TFMs: (i) the scale of the pretraining data,
and (ii) the diversity of the generated datasets. However, the
essence of relational data lies in inter-table primary–foreign
key relationships (Fey et al., 2024; Dwivedi et al., 2025),
therefore our work extends and generalizes previous efforts
to multi-tabular settings.

Relational Foundation Models. For relational learning, no
prior work has proposed a synthetic generator designed to
facilitate pretraining of RFMs. Recent works such as Griffin
(Wang et al., 2025), and the Relational Transformer (RT)
(Ranjan et al., 2025) develop RFMs pretrained on real-world
data. Griffin relies in large part on single-table pretraining
and utilizes only 14 databases from the 4DBInfer (Wang
et al., 2024) and RelBench (Robinson et al., 2024) collec-
tion. Whereas RT utilizes only 6 databases from RelBench,
resulting in a limited pretraining corpus. Alternatively some
works repurpose TFMs for graph settings (Eremeev et al.,
2025; Hayler et al., 2025), and benefit from further train-
ing on multi-table or graph datasets. The enterprise model
KumoRFM (Fey et al., 2025) utilizes a mix of publicly
available databases and synthetic data for pretraining, but
the details of the datasets remain undisclosed. Our work
addresses these shortcomings by providing an accessible
framework to generate diverse pretraining data.

Scaling Laws. The development of ever larger foundation
models is driven by the promise of scaling laws, which
predict improvements in model performance as a function
of increasing data and model sizes (Kaplan et al., 2020).
In the language and vision domains, established scaling
laws characterize performance as a function of dataset size,
model size, and compute (Hoffmann et al., 2022; Zhai et al.,
2022). Schambach et al. (2023) analyzes the scaling be-
havior of tabular models, while Ma et al. (2025) provides
explicit scaling laws characterizing the training of TFMs
with respect to model size and the number of cells in the

training corpus. Zhang et al. (2025) examines the scaling
behaviour of TFMs trained on synthetic data and identifies
diversity of the generated data as a key property enabling
generalization. However, no prior work has examined the
scaling of RFMs. PLUREL addresses this gap and allows us
to provide RFM scaling laws not only for dataset size but
also for data diversity, quantified by the number of synthetic
databases in pretraining.

Relational Database Generation. Another related line of
research is privacy-preserving synthetic database generation
(Patki et al., 2016). These methods focus on reproducing
the structure and statistical properties of a given real-world
database while protecting the privacy of the data subjects.
Recent works propose approaches based on graphical mod-
els (Cai et al., 2023), generative adversarial networks (Gu-
eye et al., 2023), transformers (Solatorio & Dupriez, 2023),
diffusion (Pang et al., 2024; Hudovernik, 2024) and graph-
based models (Scassola et al., 2025; Ketata et al., 2025;
Hudovernik et al., 2025). While these approaches address
privacy concerns and can facilitate broader data sharing, they
remain tied to existing real-world databases. They require
real databases as input and are constrained to generating new
samples that conform to the original schema. Further they
are computationally expensive for large-scale data genera-
tion. In contrast, PLUREL provides a lightweight framework
for generating diverse schemas, row-connectivity patterns,
and feature distributions, unlocking data scaling for RFMs.

5. Conclusion and Future Work
In this work, we introduce PLUREL, a novel frame-
work for generating synthetic relational databases from
scratch for Relational Foundation Model (RFM) pretraining.
PLUREL offers a flexible design space capable of synthe-
sizing diverse databases, and unlocks large-scale synthetic
pretraining without privacy constraints. Through experi-
ments with the Relational Transformer (RT), we find that (1)
pretraining loss exhibits a power-law trend as the number
of synthetic databases and dataset size increase, (2) mod-
els pretrained on larger and more diverse synthetic datasets
generalize more effectively to previously unseen real data,
and (3) synthetic pretraining produces robust base models
that enhance subsequent pretraining on real data.

Our framework and results open several new directions of
research: (1) relational data curation and synthetic design
space exploration, (2) extending PLUREL to additional data
types such as text, (3) semi-synthetic data augmentation to
expand real-world databases, (4) pretraining curriculums
and strategies to combine synthetic and real data, (5) explor-
ing impact of synthetic data on long-context modeling and
test-time scaling, and (6) joint model- and data-scaling laws.
By unlocking scalable pretraining data for RFMs, PLUREL
sets the stage for their broader applicability across domains.
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Impact Statement
This paper presents PLUREL, a new framework for gener-
ating synthetic relational databases from scratch, aimed at
addressing the scarcity of diverse, public available relational
data for training Relational Foundation Models (RFMs).
By enabling the synthesis of unlimited relational databases
with configurable schemas, connectivity patterns, and data
distributions, our work contributes to the broader field of
Foundation Models in AI, and relational deep learning, offer-
ing a privacy-preserving approach to developing AI systems
on real-world enterprise data. We do so while unlocking
new scaling laws for this field, analogous to those observed
in language, vision and other data domains.

The societal impact of this work aligns with the broader ad-
vancements in foundation models and enterprise AI, with po-
tential applications in business intelligence, fraud detection,
consumer analytics, healthcare, and supply chain industries.
Our work has profound implications for maintaining the
privacy of global consumer data, as no real business or con-
sumer data is required for foundation model development
when the proposed PLUREL is used. By democratizing
access to large-scale relational pretraining data, PLUREL
could accelerate the development of RFMs that benefit orga-
nizations of all sizes, especially reducing barriers to AI adop-
tion for enterprises that lack extensive proprietary databases.
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A. Limitations
Currently, PLUREL supports primary–foreign key (P→F) connectivity between rows of a table T and a (different) parent
table T̃ ̸= T in the schema graph G. However, certain real-world databases may exhibit self-loops in their P→F connectivity.
For example, the ParentID column (F) in the posts table of rel-stack 2 refers to the Id column (P) of the same
table. Modeling such self-loops through SCMs is currently not supported and is an interesting extension of the framework.

B. Synthesizing Databases with PLUREL

In Section 2, we introduced PLUREL in its most generic form. In this section, we detail the design choices and hyperparameter
distributions, along with the algorithms describing each stage. A summary is presented in Table 2.

Parameter Kind Sampling Choices

D
at

ab
as

e

Schema graph priors (PG) set uniform {Barabasi-Albert, Reverse Random-Tree, Watts-Strogatz}
Num tables range uniform [3, 20]
Num rows (entity tables) range uniform [500, 1000]
Num rows (activity tables) range uniform [2000, 5000]
Num columns range power-law [3, 40]
Min timestamp constant - 1990-01-01
Max timestamp constant - 2025-01-01
NULL cells (%) range uniform [0.01, 0.1]

Ta
bl

e
/S

C
M

SCM causal graph prior (PC ) set uniform {Layered, Erdos-Renyi, Barabasi-Albert, Random-Tree, Reverse
Random-Tree}

SCM feature node % range uniform [0.3, 0.9]
Num categories range uniform [2, 10]
MLP initializations set uniform { kaiming normal, kaiming uniform, xavier normal, xavier

uniform, trunc normal, sparse(0.5) }
MLP activations set uniform { relu, elu, silu, softsign, tanh }
MLP input dimension constant - 1
MLP hidden dimension constant - 32
MLP output dimension constant - 1
MLP depth constant - 2
Exogenous input prior (ξ) set uniform { Beta(0.5, 0.5), Beta(2.0, 2.0), Beta(2.0, 3.0), Beta(2.0,

4.0), Beta(4.0, 1.0) }
HSBM levels range uniform [1, 5]
HSBM clusters per level range uniform [1, 3]
Temporal trend exponent range uniform [0, 2]
Temporal trend scale (activity table) set uniform [-1, 1]
Temporal trend scale (entity table) constant - 0.0
Temporal cycle frequency set uniform {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Temporal cycle scale (activity table) set uniform [-1, 1]
Temporal cycle scale (entity table) constant - 0.0
Temporal noise scale (activity table) constant - 0.05
Temporal noise scale (entity table) constant - 1.0

D
A

G

Barabasi–Albert: edge dropout constant - 0.4
Barabasi–Albert: node attachment edges constant - 2
Erdos–Renyi: edge probability range uniform [0.3, 0.8]
Watts-Strogatz: rewire probability constant uniform [0.1, 0.3]
Layered: number of levels (depth) range uniform [2, 8]
Layered: edge dropout constant - 0.1

Table 2. Design choices and the distribution of PLUREL hyperparameters.

B.1. Stage 1: Schema Generation via Directed Graphs

The schema graph G can be sampled from any class of directed graphs with an arbitrary number of nodes (representing
tables). However, the role of G extends beyond this layer of abstraction. It determines the fraction of tokens being used
from the same table, row, column, parent tables, and child tables for preparing the context of the foundation model being
developed, which, in this work, is the Relational Transformer (RT) (Ranjan et al., 2025). This context informs RT about
the relational attention patterns to learn, which in turn affects its zero-shot performance on unseen databases. To this end,
we choose the Barabasi-Albert (BA), Reverse Random-Tree (RRT), and the Watts-Strogatz (WS) family
of DAGs as the graph priors. BA graphs model RDBs with hub tables and preferential connectivity between tables. RRT
graphs model a hierarchy of tables, and WA graphs model RDBs with table clusters. We sparsify and rewire edges for BA
and WS graphs, respectively, to increase diversity. The pseudocode is presented in Algorithm 1.

Metadata. After sampling G, we assign each table T its type (entity or activity), the number of columns FT , and rows RT .
Using this metadata, the primary key column is named as row idx, the feature columns are named as feature i, where
i ∈ {1, · · · , FT }, and the foreign key columns are named as foreign row t, with t ∈ {1, · · · , |Pr(T,G)|}.

2https://relbench.stanford.edu/datasets/rel-stack/
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Algorithm 1 Schema generation

Input: number of tables |T |, graph prior PG
Output: schema graph G, table metadata

1: Sample a directed graph G ∼ PG over nodes T
2: Apply sparsification/rewiring on G
3: for each table T in the topological ordering of nodes T do
4: Set foreign key columns according to |Pr(T,G)|
5: Sample number of feature columns
6: if out deg(T,G) ≥ 1 then
7: Assign T as an entity table
8: else
9: Assign T as an activity table

10: end if
11: Sample number of rows conditioned on table type
12: end for
13: return G and table metadata

B.2. Stage 2: Foreign Key Generation via Bipartite Graphs

In this stage, we first populate the primary key values of T as its row indices. Considering a parent table T̃ ∈ Pr(T,G), we
cluster the rows of T, T̃ into a hierarchy of blocks HT = (B1

T , · · ·BL
T ) and HT̃ = (B1

T̃
, · · ·BL

T̃
) respectively. The number

of HSBM levels L is chosen uniformly from [1, 5] with the size of each block Bl
T , B

l
T̃

chosen uniformly from [1, 3]. We
sample the entries of the block connectivity matrix (Equation (1)) P[l], ∀l ∈ [L] as follows:

P[l]ij =

0.9, if i ≡ j (mod max(Bl
T̃
, Bl

T )),

U(0.001, 0.002), otherwise.
(8)

This ensures that rows of T and T̃ from the same level and block index (modulo) are preferentially connected and form
well-separated clusters. For each row of table T , we use Equation 2 to sample the primary key j of table T̃ and assign it to
the corresponding foreign key column in T . The pseudocode is presented in Algorithm 2.

Algorithm 2 Foreign key generation

Input: table T , parent table T̃ , number of rows RT , RT̃
Output: foreign key column fkT←T̃

1: Set primary keys of T and T̃ as row indices {1, . . . , RT } and {1, . . . , RT̃ }
2: Cluster rows of T into hierarchy of blocks HT

3: Cluster rows of T̃ into hierarchy of blocks HT̃
4: Sample HSBM probability matrix P over HT ,HT̃
5: for each row i ∈ T do
6: Sample parent row index j ∈ T̃ according to the HSBM-induced block connectivity
7: Set fkT←T̃ [i]← j
8: end for
9: return foreign key column fkT←T̃

B.3. Stage 3: Feature Generation via Structural Causal Models

As described in Section 2.3, each table T ∈ T is associated with an SCM. We sample the causal graph C from the {Layered,
Erdos-Renyi, Barabasi-Albert, Random-Tree, Reverse Random-Tree} families to model diverse causal
relationships between latent and feature nodes. The exogenous input of source nodes for activity tables is modeled with
trend and cyclical patterns, along with random normal fluctuations. Whereas the exogenous input of source nodes for entity
tables is only modeled with random normal fluctuations. The intuition is that entity tables model static users or items and
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therefore do not necessarily exhibit temporal correlations among features. Nonetheless, it is an experimental design, and
not a limitation of the framework itself. The exogenous input for non-source nodes (as used in Equation (5)) is an Rdhid

vector with dhid = 32 and each entry sampled from a Beta distribution chosen from { Beta(0.5, 0.5), Beta(2.0,
2.0), Beta(2.0, 3.0), Beta(2.0, 4.0), Beta(4.0, 1.0) }. In the causal graph C, we assign edge weights
by sampling from a normal distribution N (0, 1). These weights are used to aggregate the embeddings of predecessor nodes
Pr(vi, CT ) in Equation (5) during value propagation through CT . For aggregating embeddings of feature nodes originating
from foreign SCMs, we instead use a uniform weight of 1/|VF

T̃
|. The pseudocode is presented in Algorithm 3.

Algorithm 3 Feature generation

Input: table T , parent tables Pr(T,G), row count RT , SCM (CT ,ZT ) with feature nodes VF
T , source nodes VS

T

Output: populated table T

1: for each row index r = 1 to RT do
2: Initialize exogenous inputs u(r)

i for all source nodes vi ∈ VS
T using temporal patterns

3: Assign values to source nodes using zi = Hi(u
(r)
i )

4: for each non-source node vi in topological order of CT do
5: Collect predecessor node values Pr(vi, CT )
6: Collect feature values from parent-table SCMs indexed by foreign keys
7: Project collected values into a shared latent space
8: Aggregate projected representations with exogenous input according to the SCM mechanism
9: Reconstruct a type-specific value for vi

10: end for
11: Write values of feature nodes VF

T to the cells of row r in table T
12: end for
13: return populated table T

B.4. Computational Efficiency

To characterize the computational footprint of PLUREL, we generate synthetic RDBs with varying numbers of tables using
a single-threaded process. For each configuration, other hyperparameters are fixed as in Table 2 and results are averaged
over ten random seeds. As shown in Table 3, generation latency increases approximately linearly with the number of tables,
ranging from 147.5 seconds for 10 tables to 1368.6 seconds for 80 tables, corresponding to an average throughput of roughly
14–17 seconds per table. Peak memory usage is below 1 GB even in the largest setting of 80 tables/RDB. The dominant
contributor to end-to-end latency is conditional row generation induced by primary–foreign key connectivity, while schema
graph instantiation and post-processing incur comparatively minor overhead. Consequently, the sparsity of the schema graph
G plays a central role in determining latency. Since the pipeline is CPU-only, PLUREL introduces minimal overhead relative
to downstream GPU training and remains suitable for both low-resource environments and datacenter-scale deployments.

Number of Tables Latency (sec) Peak Memory (GB)

10 147.5±66.3 0.45±0.01
20 267.0±129.1 0.55±0.04
40 584.3±252.1 0.77±0.06
80 1368.6±950.3 0.91±0.11

Table 3. Latency (in seconds) and peak memory (GB) required to generate a varying number of tables in a single synthetic RDB with
a single-threaded process. The mean and standard deviation are computed across 10 seeds. The large variance in latency is a result of
diverse schema graphs being sampled across the seeds, with sparser graphs resulting in faster table generation.

C. Background on Relational Transformer
The Relational Transformer (RT) (Ranjan et al., 2025) is a specialized transformer architecture for modeling relational data
and enabling zero-shot generalization to predictive tasks on unseen databases. It achieves this with two key designs: (1)
cell-level tokenization of relational data, and (2) a Relational Attention mechanism. RT outperforms state-of-the-art LLMs
on predictive tasks with its zero-shot generalization capabilities and introduces a new modeling paradigm for RFMs.
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C.1. Token Representations

RT represents a relational database as a sequence of cells, with each cell (v, c, t) represented by a single token. Here v is the
cell value, c is the column name, and t is the table name. RT employs type-specific processing to normalize numeric, boolean,
and datetime type cells and project these modalities into a shared embedding space. Text-type cells are first embedded using
a frozen text encoder and projected into this shared space. By integrating the predictive task as a designated table in the
database, RT unifies all downstream tasks to be cast as a Masked Token Prediction (MTP) objective, supporting scalable
self-supervised learning. Finally, to incorporate schema semantics, RT embeds column and table names by embedding the
phrase “<column name> of <table name>” (e.g., “price of product”) using a pretrained sentence encoder. The final token
embedding is obtained by projecting these normalized values via a data-type-specific weight matrix and adding the projected
embeddings. For cells masked during MTP, the value embedding is replaced by a learned, data-type-specific mask vector.

C.2. Relational Attention

RT operates on cell-level tokens to model dependencies across rows, columns, and tables. The architecture augments
standard transformer blocks with Relational Attention, comprising three structured attention layers followed by a bidirectional
attention layer. It is implemented using the masked scaled dot-product attention (SDPA) as

Attention(Q,K,V;M) = Softmax
(

Mask(QK⊤;M)√
dk

)
V, Mask(A;M)ij =

{
Aij , Mij = 1

−∞, Mij = 0.
(9)

Here Q,K ∈ Rn×dk and V ∈ Rn×dv denote the query, key, and value matrices, where n is the context length. The binary
mask M ∈ {0, 1}n×n specifies allowable token interactions, with M[q, k] = 1 indicating that token q can attend to token
k. For example, causal language models use Mcausal[q, k] = 1{k ≤ q}. Column Attention. Restricts attention to tokens
within the same column, capturing attribute-level statistics and cross-row patterns. Feature Attention. Allows attention
within the same row and to parent rows connected via foreign–primary key (F→P) links, aggregating attributes that describe
a given entity. Neighbor Attention. Enables attention to child rows linked via primary–foreign (P→F) keys, analogous
to message passing in graph neural networks. Finally, Full attention is a standard bidirectional layer allowing pairwise
interactions between all the tokens. However, due to its limited utility on RelBench tasks as observed by (Ranjan et al.,
2025), we skip this layer in our RT models. Furthermore, owing to the diverse modalities of data, RT with the standard
Relational Attention layer exhibits early overfitting behaviour during pretraining. We address this key gap in Appendix D.2.

C.3. Context Preparation with Breadth First Search (BFS) Sampling

For a given seed row, which is typically a row in the task table, RT independently constructs a context window anchored at
this seed row and expands it to a fixed budget of L cells using a relation-aware, bounded breadth-first traversal. Rows serve
as the sampling unit, where once a row is selected, all feature cells (other than primary/foreign key columns) are added to
the context. Starting from the seed row, the algorithm traverses foreign–primary (F→P) and primary–foreign (P→F) key
links, prioritizing low-hop neighbors under the assumption that proximity in the relational graph correlates with relevant
information for predictions. To control graph expansion, F→P links are always followed immediately, whereas P→F links
are subsampled by enforcing a maximum fan-out of w child rows per parent. The traversal terminates when the total number
of collected cells reaches the context budget. Furthermore, rows with timestamps greater than that of the seed row are
excluded from the context to enforce temporal consistency. We refer to Ranjan et al. (2025) for additional details.

D. Additional Experiments
D.1. Error Bars for Main Experiments

In Table 4 we report uncertainty estimates from our zero-shot evaluation of different pretraining strategies reported in
Table 1. We report the mean and standard error across three random seeds. When pretrained using synthetic data followed
by real data, the model consistently improves upon the performance of RT trained solely on real data. On certain tasks,
we observe slight degradations in performance. Notably, these tasks align with those for which the original authors report
performance degradation when ablating table semantics (see Ranjan et al. (2025), Appendix E, Table 8). Since row values
generated by PLUREL do not functionally depend on table semantics (i.e., column and table names), we hypothesize that
this limitation contributes to the observed performance drop.
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Dataset Task Real
only

Synthetic +
Real (ours)

Absolute
Gain (%)

Synthetic
only (ours)

AUROC(%) for classification. Higher is better. Majority baseline is 50.0.

rel-amazon user-churn 64.2±0.1 65.0±0.0 +0.8 64.4
rel-hm user-churn 67.4±0.2 66.0±0.2 −1.4 63.7
rel-stack user-badge 80.0±1.1 82.0±0.3 +2.0 81.4
rel-stack user-engage 78.9±1.4 86.2±0.0 +7.4 82.4
rel-amazon item-churn 67.6±0.8 72.5±0.1 +4.9 71.0
rel-avito user-visits 57.2±2.8 63.4±0.0 +6.2 63.5
rel-avito user-clicks 54.7±2.9 47.9±1.0 −6.8 45.9
rel-trial study-out 54.4±1.2 51.8±2.6 −2.6 53.8
rel-f1 driver-dnf 80.7±0.4 81.0±0.5 +0.3 76.7
rel-f1 driver-top3 86.9±0.4 88.4±0.0 +1.5 82.6

Mean 69.2±0.6 70.4±0.3 +1.2 68.5

R2(%) for regression. Higher is better. Mean baseline is 0.0.

rel-hm item-sales 16.0±0.8 20.0±1.4 +4.0 4.4
rel-amazon user-ltv 14.5±1.2 18.5±1.7 +4.0 9.8
rel-amazon item-ltv 35.3±3.3 40.5±0.6 +5.2 10.7
rel-stack post-votes 22.3±2.2 25.5±0.1 +3.2 15.7
rel-trial site-succ 33.7±0.5 38.6±0.2 +5.0 38.3
rel-trial study-adv 1.9±0.8 1.6±0.2 −0.3 −0.8
rel-f1 driver-pos 54.3±0.6 55.5±0.5 +1.2 41.3
rel-avito ad-ctr 3.1±0.3 4.9±1.3 +1.9 2.5

Mean 22.6±0.6 25.7±0.1 +3.0 15.2

Synthetic Pretraining: 1024 RDBs, 4B tokens.

Dataset Task Real
only

Synthetic +
Real (ours)

Absolute
Gain (%)

Synthetic
only (ours)

AUROC(%) for classification. Higher is better. Majority baseline is 50.0.

rel-amazon user-churn 64.2±0.1 64.7±0.1 +0.5 64.1
rel-hm user-churn 67.4±0.2 66.5±0.7 −0.9 63.1
rel-stack user-badge 80.0±1.1 82.0±0.2 +2.0 77.0
rel-stack user-engage 78.9±1.4 85.2±0.2 +6.4 71.5
rel-amazon item-churn 67.6±0.8 72.5±0.4 +4.8 69.0
rel-avito user-visits 57.2±2.8 62.2±0.1 +5.0 62.3
rel-avito user-clicks 54.7±2.9 50.0±0.9 −4.7 46.4
rel-trial study-out 54.4±1.2 51.6±0.4 −2.9 55.1
rel-f1 driver-dnf 80.7±0.4 81.4±0.2 +0.8 77.6
rel-f1 driver-top3 86.9±0.4 88.6±0.2 +1.7 81.4

Mean 69.2±0.6 70.5±0.0 +1.3 66.8

R2(%) for regression. Higher is better. Mean baseline is 0.0.

rel-hm item-sales 16.0±0.8 25.6±1.0 +9.5 5.4
rel-amazon user-ltv 14.5±1.2 21.7±0.7 +7.2 9.2
rel-amazon item-ltv 35.3±3.3 39.4±0.5 +4.1 9.7
rel-stack post-votes 22.3±2.2 24.7±0.6 +2.4 14.1
rel-trial site-succ 33.7±0.5 37.9±0.2 +4.2 35.3
rel-trial study-adv 1.9±0.8 1.3±0.5 −0.6 −0.7
rel-f1 driver-pos 54.3±0.6 54.7±0.3 +0.5 35.9
rel-avito ad-ctr 3.1±0.3 7.9±0.9 +4.9 2.0

Mean 22.6±0.6 26.7±0.2 +4.0 13.9

Synthetic Pretraining: 512 RDBs, 32B tokens.

Table 4. Same setup as Table 1. Here we also report ± standard error over 3 seeds. Continued pretraining is robust to choice of base model.
Worse synthetic-only column can still give better results in the synthetic+real column (e.g., compare the Mean rows between the two
tables) indicating the occurrence of post-hoc reversal (Ranjan et al., 2024) and suggesting that post-hoc model selection would be ideal.

D.2. Architectural Improvements: Query-Key Normalization

The RT architecture supports multi-modal input representations for text, numeric, and boolean cell tokens, with type-specific
encoders. During synthetic pretraining with such multi-modal(type) input tokens, we observed that zero-shot generalization
to RelBench tasks was sensitive to the RT initialization. To reduce such sensitivity, we applied Query-Key Normalization
(QK-Norm) (Henry et al., 2020; Wortsman et al., 2024; Team, 2025) with RMSNorm across the head dimension (per head)
to the relational attention layer (9). Formally, the masked scaled dot-product attention with QK-Norm is given by:

Attention(Q,K,V;M) = Softmax

(
Mask(RMSNorm (Q)RMSNorm

(
K⊤
)
;M)

√
dk

)
V, (10)

Reducing variance across seeds. We initialized RT with four different seeds {0, 1, 2, 3} and used the same seed (0)
for the training and evaluation data loaders. We pretrain RT in BFloat16 precision with synthetic data on 1B tokens
with the rest of the hyperparameters chosen as per Section 3. We use the rel-amazon tasks in RelBench for measuring
zero-shot generalization. Without QK Norm, the maximum AUROC (%) difference across model seeds on the test split
of rel-amazon/item-churn task was as high as 9.4% at the end of training. Furthermore, the difference was even
higher (10.5%) on the test split of the rel-amazon/user-churn task. With QK Norm, such sensitivity to initialization
is mitigated, and the difference across seeds reduces to 3.4% and 2.2% respectively.

Effects on baseline performance. Following the same setup as Section 3.3, we pretrained a randomly initialized RT
without QK-Norm on RelBench data using the leave-one-db-out approach and noticed a drop in the baseline performance. In
particular, without QK-Norm, RT suffers from an early overfitting problem on certain tasks (especially binary classification),
while also lowering the peak performance (see Figure 5). We also observed that the baseline (Real only) mean test AUROC
and R 2 (%) can decrease by 3.1% (absolute) and 3.7% (absolute) without QK Norm.
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(a) user-engagement/val (b) user-engagement/test (c) user-badge/val (d) user-badge/test

(e) post-votes/val (f) post-votes/test (g) driver-position/val (h) driver-position/test

Figure 5. QK-Norm mitigates early overfitting with leave-one-db-out pretraining during the baseline runs and also improves the peak
performance. AUROC (%) on the val/test splits of rel-stack/user-engagement (a, b) and rel-stack/user-badge
(c, d) tasks highlights the mitigation of overfitting. R2(%) on the val/test splits of rel-stack/post-votes (e, f) and
rel-f1/driver-position (g, h) tasks shows improvements to peak performance.
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