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Abstract

Trained models are often composed with post-hoc transforms such as temperature
scaling (TS), ensembling and stochastic weight averaging (SWA) to improve
performance, robustness, uncertainty estimation, etc. However, such transforms are
typically applied only after the base models have already been finalized by standard
means. In this paper, we challenge this practice with an extensive empirical
study. In particular, we demonstrate a phenomenon that we call post-hoc reversal,
where performance trends are reversed after applying post-hoc transforms. This
phenomenon is especially prominent in high-noise settings. For example, while
base models overfit badly early in training, both ensembling and SWA favor base
models trained for more epochs. Post-hoc reversal can also prevent the appearance
of double descent and mitigate mismatches between test loss and test error seen in
base models. Preliminary analyses suggest that these transforms induce reversal
by suppressing the influence of mislabeled examples, exploiting differences in
their learning dynamics from those of clean examples. Based on our findings, we
propose post-hoc selection, a simple technique whereby post-hoc metrics inform
model development decisions such as early stopping, checkpointing, and broader
hyperparameter choices. Our experiments span real-world vision, language, tabular
and graph datasets. On an LLM instruction tuning dataset, post-hoc selection
results in > 1.5× MMLU improvement compared to naive selection.2

1 Introduction

Many widely used techniques in deep learning operate on trained models; we refer to these as post-hoc
transforms. Examples include temperature scaling (TS) [19], stochastic weight averaging (SWA) [28]
and ensembling [39]. These techniques have shown promise for improving predictive performance,
robustness, uncertainty estimation, out-of-distribution generalization, and few-shot performance
[4, 6, 39, 56, 84]. Typically, the pre-training and post-hoc stages are isolated. The workflow is: (1)
pick model architecture, training recipe, hyperparameters, etc. to optimize for individual model
performance; (2) train one or more models; (3) pick best-performing checkpoints; (4) apply post-hoc
transforms. We refer to this procedure as naive selection.

In this paper, we demonstrate interesting drawbacks of naive selection. In a large-scale empirical study,
we uncover post-hoc reversal—a phenomenon whereby post-hoc transforms reverse performance
trends between models (Fig. 1). We demonstrate post-hoc reversal with respect to training epochs,
model sizes, and other hyperparameters like learning rate schedules. We further establish that post-
hoc reversal is a robust phenomenon by experimenting on real-world datasets across domains and
modalities, with diverse model classes and training setups.
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2Code is available at https://github.com/rishabh-ranjan/post-hoc-reversal.
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Figure 1: An illustration of the phenomenon of post-hoc reversal on the FMoW dataset: base
performance at epoch t2 is worse than at epoch t1 (b2 > b1), but post-hoc performance is better
(p2 < p1). The current practice of naive selection considers base metrics to pick models at epoch t1.
Our proposed technique of post-hoc selection instead uses post-hoc metrics to pick models at epoch t2,
resulting in > 2× improvement over naive selection in both test loss and error. SWA+Ens+TS refers
to the post-hoc transform obtained by composing SWA, ensemble (Ens) and temperature scaling (TS).
Base curves show mean of 8 runs, models from which constitute the ensembles. Individual runs are
shown in lighter colors. See Fig. 5 for more detailed curves on this dataset.

Post-hoc reversal is most prominent on noisy datasets (Fig. 2). Other phenomena exacerbated by noise
include catastrophic overfitting [50],double descent [55], and loss-error mismatch [19]. While these
phenomena pose challenges to model development, post-hoc reversal suggests a path to alleviate them.
Noise can arise not only from labeling errors, but also from inherent uncertainty in the prediction
task, such as in next token prediction [60]. Indeed, severe performance degradation has limited
multi-epoch training of large language models (LLMs) [81]. Here too, post-hoc reversal reveals a
promising path for sustained performance improvements over longer training.

The core intuition for post-hoc reversal is that models continue to learn generalizable patterns
from clean examples, even when spurious patterns learnt from mislabeled examples worsen the
overall performance. Post-hoc transforms exploit differences in the learning dynamics of clean and
mislabeled examples [42] to reinforce the influence of the former, while suppressing that of the latter.
When strong enough, this effect leads to reversal. We show evidence for these intuitions in § 5.

Based on our findings, we propose post-hoc selection—a simple technique whereby base models
are selected based on post-transform performance. The technique is practical as the transforms of
interest can be cheaply incorporated into the validation phase of the training loop. Post-hoc selection
significantly improves the performance of the transformed models, with > 2× improvements over
naive selection in some cases (Fig. 2). In terms of absolute performance, post-hoc selection leads to
> 3-point reduction in test error over naive selection on a satellite imaging dataset (Fig. 1). The
reduction is even higher (> 5 points) when using out-of-distribution (OOD) val/test splits for the
same dataset. On an LLM instruction tuning dataset, under our procedure a composed transform of
SWA, ensemble and TS gives > 1.5× MMLU improvement over a naive application of the same
transform on prematurely selected models.
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Figure 2: A comparison of naive and post-hoc selection on label sets from CIFAR-10/100-N (abbr.
C-10/100-N) for the SWA+TS transform. On noisy label sets, post-hoc selection is often > 2× better.
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2 Related Work

A slew of empirical works [10, 17, 31, 55, 57, 58] have revealed both challenges and opportunities
for improving the understanding and practice of deep learning. Our work expands this list with a
novel phenomenon tying together noisy data learning and post-hoc transforms. Orthogonal to our
work, a number of training-stage strategies for noisy data have been proposed (see [69] for a survey).

TS belongs to a family of calibration techniques [2, 19] proposed with the goal of producing well-
calibrated probabilities. Ensembling is a foundational technique in machine learning, with simple
variants routinely used in deep learning [3, 39]. SWA [28] is the culmination of a line of work [18, 25]
seeking to cheaply approximate ensembling. Despite their prevalence, a thorough understanding of
best practices for wielding these techniques is lacking, especially in the context of noisy data. Our
work fills this gap. For a more detailed discussion on related work, see App. A.

3 Preliminaries and Background

We describe our learning setup in § 3.1, with emphasis on noisy data, a key focus of this work. In
§ 3.2, we introduce the post-hoc transforms we study.

3.1 Learning on Noisy Data

Setup. We consider multi-class classification with C classes, input x ∈ X and label y ∈ Y =
{1, . . . , C}. Training, validation and test sets are drawn i.i.d. from the data distribution D. A
classifier f : Θ × X → RC outputs the logit vector z = f(x;θ), given parameter vector θ ∈ Θ.
Predicted probability of class k is Pf [y = k | x] = σ(z)k, where σ is the softmax function.

Noise. Data D is said to be clean if PD[y | x] is one-hot for all x, i.e., PD[y | x] = 1{y = y∗(x)}
for some labeling function y∗ : X → Y . Then, for any example input x(i) in the dataset, the observed
label is y(i) = y∗(x(i)). When PD[y | x] is not one-hot, D is said to be noisy and the observed label
is only a stochastic sample y(i) ∼ PD[y | x = x(i)] from the underlying conditional distribution.
Noise can arise due to (1) non-determinism in the prediction target (2) insufficient information in the
input context, and (3) annotation errors. See App. B.1 for illustrated examples.

Metrics. A metric M : RC × Y → R compares the predicted logits z with the observed la-
bel y. Mf (θ) = M[f( · ;θ)] = E(x,y)∼D[M(f(x;θ), y)] denotes the metric computed over D
given f and θ. We use two metrics (1) classification error, or simply error, with Merror(z, y) =
1{argmaxk zk ̸= y} and (2) cross-entropy loss, or simply loss, with Mloss(z, y) = − log σ(z)y.
The exponentiated loss, also called perplexity, is common in language modeling, where it is computed
on a per-token basis. A standard result states that loss is minimized if and only if the ground truth
conditional probability is recovered [20]. See App. B.1 for additional background.

3.2 Post-Hoc Transforms in Machine Learning

Definition 1 (Post-Hoc Transform) A post-hoc transform T maps a classifier f : Θ× X → Y to
another classifier T ◦ f : ΘK ×X → Y , for some K.

Temperature Scaling (TS). TS [19] involves scaling the logits with a temperature τ ∈ R obtained
by optimizing the cross-entropy loss over the validation set, with model parameters fixed (Eqn. 1).
Temperature scaling preserves error as it does not affect the predicted class. We use the torchcal [63]
implementation, which optimizes the temperature on GPU with Newton’s method [15].

(TTS ◦ f)(x;θ) =
1

τ
f(x;θ), with τ = argmin

τ
Mloss

val

[
1

τ
f( · ;θ)

]
(1)

Ensembling. In this method, predictions from an ensemble of classifiers are combined. In deep
learning, simply averaging the temperature-scaled logits is effective (Eqn. 2). θ1, . . . ,θK are
obtained from multiple training runs with the same architecture and dataset, with stochasticity from
mini-batch sampling and random initialization, if applicable.
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(TEns ◦ f) (x;θ1, . . . ,θK) =
1

K

K∑
k=1

1

τk
f(x;θk), with τk = argmin

τ
Mloss

val

[
1

τ
f( · ;θk)

]
(2)

Stochastic Weight Averaging (SWA). SWA [28] involves averaging weights θ1, . . . ,θK from the
same training run (Eqn. 3). BatchNorm statistics are recomputed after averaging, if required. We
pick checkpoints at epoch boundaries. Unlike Izmailov et al. [28], we do not skip the initial epochs
(warmup) or modify the learning rate schedule3.

(TSWA ◦ f) (x;θ1, . . . ,θK) = f

(
x;

1

K

K∑
i=1

θi

)
(3)

Compositions. TS, ensembling and SWA can be readily composed. In particular, we consider
SWA+TS and SWA+Ens+TS, for single- and multi-model settings respectively. We denote them with
TS+T = TTS ◦ TSWA and TS+E+T = TTS ◦ TEns ◦ TSWA (explicit forms in App. B.2).

4 Post-Hoc Reversal: Formalization and Empirical Study

To use post-hoc transforms, one must first select models to apply them to. Current practice is to select
the best-performing model independent of post-hoc transforms, rationalized by an implicit monotonic-
ity assumption – “better-performing models result in better performance after transformation”. As we
shall see, this assumption is often violated in practice. We call such violations post-hoc reversal. In
§ 4.1, we formalize post-hoc reversal and discuss ways to detect it. In § 4.2, we empirically study
various kinds of post-hoc reversal with special practical relevance.

4.1 Definitions

First, we give a general definition of post-hoc reversal (Def. 2). If Def. 2 holds with φk’s which
are optimal for the base metric Mf , then naive selection becomes suboptimal as it picks φk’s, but
θk’s are better under the post-hoc metric MT ◦f . Since the entire space of parameter tuples ΘK can
be large, we study post-hoc reversal restricted to indexed parameters (Def. 3). Indices can be, for
example, training epochs (§ 4.2.1), model sizes (§ 4.2.2) or hyperparameter configurations (§ 4.2.3).

Definition 2 (Post-hoc reversal) Let a post-hoc transform T map a classifier f : Θ × X → Y to
T ◦ f : ΘK × X → Y . T applied to f exhibits post-hoc reversal for a metric M if there exist
(θ1, . . . ,θK), (φ1, . . . ,φK) ∈ ΘK such that Mf (θk) ≥ Mf (φk) for all k = 1, . . . ,K but
MT ◦f (θ1, . . . ,θK) < MT ◦f (φ1, . . . ,φK).

Definition 3 (Index-wise post-hoc reversal) Let I be a set of indices and P : I → ΘK map indices
to parameter tuples. When Def. 2 holds with (θ1, . . . ,θK) = P(s), (φ1, . . . ,φK) = P(t) for some
s, t ∈ I, we call it index-wise post-hoc reversal.

Diagnosis. To enable a visual diagnosis of post-hoc reversal, we define base and post-hoc curves
(Def. 4) and a relaxed notion of post-hoc reversal for them (Def. 5). Post-hoc reversal is characterized
by non-monotonicity between the base and post-hoc curves, i.e., there exist regions where one
improves while the other worsens. This happens, for instance, when one curve exhibits double
descent but the other doesn’t. Different optimal indices for the two curves is another indicator of
post-hoc reversal.

Definition 4 (Base and post-hoc curves) The base and post-hoc curves Mbase,Mpost : I → R
are given by Mbase(t) = 1

K

∑K
k=1 Mf (θk) and Mpost(t) = MT ◦f (θ1, . . . ,θK), where

(θ1, . . . ,θK) = P(t).

Definition 5 (Post-hoc reversal for curves) Base and post-hoc curves Mbase,Mpost : I → R ex-
hibit post-hoc reversal when there exist s, t ∈ I such that Mbase(s) ≥ Mbase(t) but Mpost(s) <
Mpost(t).

3Thus, our variant of SWA is hyperparameter-free.
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Figure 3: Loss and error for CIFAR-10-N Clean (approx. 0% noise), Rand1 (approx. 17% noise) and
Worst (approx. 40% noise). Except for ensemble curves, mean of 8 runs is shown; individual runs
are in lighter shades. Ensembles comprise models from these 8 runs. For example, observe post-hoc
reversal for C-10-N Worst: (1) error plot: from epoch 5 to 50, solid red (base) curve worsens but
solid orange (SWA) curve improves; (2) error plot: solid red (base) curve has a double descent but
dashed red (ensemble) curve does not; (3) loss plots: solid red (base) curve has a double descent
pre-TS but not post-TS; (4) error plot: best error is at approx. epoch 5 for solid red (base) curve but
at approx. epoch 60 for dashed orange (SWA ensemble) curve.

4.2 Experiments

4.2.1 Epoch-Wise Post-Hoc Reversal

When the indices in Def. 3 are training epochs, we call it epoch-wise post-hoc reversal. We use θt to
denote the model at the end of epoch t. For ensembles, a superscript j denotes the j-th training run
(out of N runs). t ∈ I maps to parameters P(t) ∈ ΘK (K = 1 for TS; N for ensemble; and t for
SWA) as follows: PTS(t) = (θt); PEns(t) = (θ1

t , . . . ,θ
N
t )4.; PSWA(t) = (θ1, . . . ,θt).

Experimental setup. We focus on the CIFAR-N dataset [74]. CIFAR-10-N uses the same images as
CIFAR-10 but provides multiple human-annotated label sets, allowing the study of realistic noise
patterns of varying levels in a controlled manner. Clean is the original label set; Rand1,2,3 are 3
sets of human labels; Aggre combines Rand1,2,3 by majority vote; and Worst combines them by
picking an incorrect label, if possible. Similarly CIFAR-100-N has two label sets, Clean and Noisy,
with the latter being human-labeled. We train ResNet18 [21] models for 100 epochs with a cosine
annealed learning rate. Additional details on datasets and training setup are in App. C. Fig. 3 shows
test curves on CIFAR-10-N Clean, Rand1 and Worst. Other label sets and CIFAR-100-N are in App.
E. For clarity, we omit the SWA base curve Mbase

SWA(t) = (Mf (θ1) + · · ·+Mf (θt))/t in the plots,
and simply re-use the curve Mbase(t) = Mf (θt) to compare with the post-hoc SWA curve. While
deviating from Def. 4, this better reflects the current practice of early stopping on the latest epoch’s
base metric.

Observations. First, we focus on the base curves: (1) Overfitting: As noise increases, test curves go
from a single descent to a double descent to a U-shaped curve with increased overfitting. (2) Double
descent: Noise amplifies double descent, and the second descent worsens with increasing noise (as
compared to the first). (3) Loss-error mismatch: Loss overfits more drastically than error, leading to a
mismatch with higher noise. Optimal models for loss and error can be different.

4Ensembling models from possibly unequal epochs is covered in § 6
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Figure 5: FMoW test curves for 3 LR schedules. Note that the pre-
TS loss is significantly higher than the post-TS loss. For example,
observe post-hoc reversal w.r.t. cosine and constant LRs at epoch
50 between: (1) solid blue (base) and dashed blue (ensemble) error
curves; (2) solid blue (base) and solid orange (SWA) post-TS loss
curves; (3) solid blue (base) curves for pre-TS and post-TS loss.

Next, we consider the general impact of post-hoc transforms: (4) Performance improvements: TS,
SWA and ensemble always improve performace, both individually and in composition with larger
gaps for noisy label sets. (5) Post-hoc reversal: Post-hoc reversal manifests as non-monotonicity
between the base and post-hoc curves, especially for noisy label sets. (6) SWA vs Ensemble: SWA
can recover much of the ensemble gain, but the optimal epoch often differs a lot from the base curve.
(7) Smoother curves: Base curves fluctuate wildly, but SWA and ensemble curves are smooth, making
them more reliable for early stopping.

Finally, we discuss some benefits from post-hoc reversal: (8) Overfitting: All transforms reduce
overfitting, often reverting performance degradation. (9) Double descent: SWA, ensemble and
compositions flatten the double descent peak. TS, on the other hand, leads to a double descent for
some cases where there was none before. (10) Loss-error mismatch: TS aligns the loss and error
curves, enabling simultaneously good loss and error.

4.2.2 Model-Wise Post-Hoc Reversal

Here, indices represent model sizes. Models of all sizes are trained for T epochs, large enough
for convergence. Following [55], we avoid early stopping. Notation-wise, we add a subscript to
θ to indicate the model size s. Parameters are indexed as follows: PTS(s) = (θT,s); PEns(s) =

(θ1
T,s, . . . ,θ

N
T,s); PSWA(s) = (θ1,s, . . . ,θT,s).

Experimental setup. We parameterize a family of ResNet18s by scaling the number of filters in the
convolutional layers. Specifically, we use [k, 2k, 4k, 8k] filters for width k. The standard ResNet18
corresponds to k = 64. Otherwise the training setup is same as before. Fig. 4 shows the curves.
Concretely, the index set I = {2, 4, . . . , 64} is the set of ResNet widths k described above.

Observations. Post-hoc transforms improve performance (up to ≈ 10 points for error) and mitigate
double descent. Further, we see yet another way in which higher-capacity models are better: they
give better results under post-hoc transforms even when lower-capacity base models perform better.
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4.2.3 Hyperparameter-Wise Post-Hoc Reversal

In general, the index set I can contain any hyperparameter configurations. Here, we consider two
hyperparamters: learning rate schedule and training epochs. To avoid repeating CIFAR-N epoch-wise
curves, we experiment on a fresh dataset, FMoW.

Experimental setup. We experiment on learning rates (LRs) and training epochs, with index set
I = {const, exp, cos} × {1, . . . , T}. Here, const, exp and cos refer to constant, exponentially
decaying and cosine annealed LRs respectively, and T is the total number of epochs. We train
DenseNet121 [26] models on the FMoW dataset [9] which constitutes a 62-way classification of land
use from satellite images. For more details, see App. C. Fig. 5 shows the curves.

LR-wise observations. We see some interesting instances of post-hoc reversal: (1) constant LR has
the worst base performance but the best post-hoc performance; (2) under SWA and TS (composed),
the curves continue to improve at the later epochs for constant LR, but not for the decaying LRs5.

Epoch-wise observations. Epoch-wise post-hoc reversal occurs for all LR schedules. SWA and
ensembling convert the double descent into a strong single descent, with approx. 10-point improve-
ment in error for the latter. For constant LR, this also changes the optimal epoch. SWA only recovers
about half of the ensemble gain, and perhaps surprisingly, ensembling SWA models is not better than
ensembling alone. Pre-TS loss curves show a strong mismatch with the error curves, but TS enables
simultaneously good loss and error with the last epoch models. Overall, these observations reinforce
the trends gleaned from the CIFAR-N experiments.

5 Intuitions for Post-Hoc Reversal

In this section, we give hypotheses for post-hoc reversal, backed by experimental evidence.

Ensembling and SWA delay catastrophic overfitting. Models learn generalizable patterns from
clean examples, and spurious patterns from mislabeled ones. The latter causes overfitting. When
noise is low, the former dominates and overfitting is benign. Otherwise, overfitting is catastrophic.
Ensembling and SWA improve fitting of clean examples, and reduce memorization of mislabeled
ones. When this overturns the dominance of spurious patterns, we observe reversal.

Fig. 6 validates this intuition for SWA on CIFAR-10-N Worst. Fig. 7 further suggests the underlying
mechanism — predictions on the mislabeled train subset fluctuate much more during training, allow-

5Possibly due to higher model variance with constant LR, beneficial for both ensembling and SWA.
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Table 1: Naive vs post-hoc (ours) selection for SWA+TS and SWA+Ens+TS transforms. Better values
are in bold. Except some clean cases, post-hoc selection is always better, often more than doubling
the improvement over no transform. See Tabs. 6 and 8 in App. E for standard deviations.

Metric → Test Loss Test Error (%)

Transform → None SWA+TS SWA+Ens+TS None SWA+TS SWA+Ens+TS

Dataset ↓ Naive Ours Naive Ours Naive Ours Naive Ours

C-10-N Clean 0.435 0.269 0.270 0.234 0.233 9.75 9.09 9.10 8.30 8.24
C-10-N Aggre 0.722 0.663 0.585 0.608 0.543 19.20 17.08 16.95 15.88 15.74
C-10-N Rand1 1.009 0.968 0.907 0.916 0.859 28.63 27.13 24.84 24.80 23.50
C-10-N Worst 1.511 1.483 1.443 1.437 1.399 46.84 46.12 44.14 44.30 42.88

C-100-N Clean 1.508 1.215 1.205 1.065 1.063 33.83 32.67 32.69 29.90 29.94
C-100-N Noisy 2.416 2.289 2.136 2.129 1.994 58.68 54.94 53.18 51.34 50.26

FMoW (ID) 1.583 1.627 1.554 1.494 1.305 43.20 42.69 39.92 37.95 34.93
FMoW (OOD) 1.831 1.840 1.788 1.700 1.571 49.32 49.70 46.75 46.74 41.56

ing SWA to easily revert their memorization. In App. G, we extend this analysis to ensembling and
solidify the intuition further by visualizing decision boundaries on a synthetic dataset. This explana-
tion also applies to flattening of the double descent peak, which is a manifestation of catastrophic
overfitting.

TS mitigates loss-error mismatch. Once a neural net has fit a train example, the cross-entropy loss
on it can be lowered by simply upscaling the weights of the linear output layer. This makes the model
overconfident later in training, as shown in [19]. For a mislabeled example, this leads to worse loss
on similar test instances. The test error is not affected as it is independent of the scale of the logits.
In high-noise settings, test loss can worsen due to memorization of mislabeled examples, even as
the test error improves from continued learning on clean examples, leading to loss-error mismatch.
TS fixes this by downscaling the logits. Indeed, one finds that the temperature (as obtained with a
held-out set) increases with epochs (Fig. 8).

Post-hoc reversal can occur against epochs, model sizes or other hyperparameters. Different
variants of post-hoc reversal can be unified via effective model complexity (EMC), introduced in [55]
to unify epoch- and model-wise double descent. EMC measures memorization capacity, which plays
a key role in post-hoc reversal. EMC increases with epochs and model size. Further, EMC increases
with epochs more rapidly for constant LR than annealed LR, explaining our observations in § 4.2.3.

6 Post-Hoc Selection: Leveraging Post-Hoc Reversal in Practice

Our findings from §4 motivate the principle of post-hoc selection, where model development decisions
take post-hoc transforms into account. For concreteness, we discuss the choice of checkpoints from
training runs under the SWA+TS and SWA+Ens+TS transforms. Checkpoint selection reduces to the
selection of the final epoch T̂ , as SWA uses all checkpoints up to that epoch. Mval denotes a metric
of choice computed on the validation set.

SWA+TS. Naive selection picks epoch T̂ = argminT Mval
f (θT ). In contrast, post-hoc selection

picks T̂ = argminT Mval
TS+T◦f ((θt)

T
t=1).

SWA+Ens+TS. Here we have N different training runs to pick epochs for. Naive selection picks
T̂j = argminT Mval

f (θj
T ) for each run independently. In contrast, post-hoc selection would ideally

pick T̂1, . . . , T̂N = argminT1,...,TN
Mval

TS+E+T◦f ((θ
1
t )

T1
t=1, . . . , (θ

N
t )TN

t=1) which jointly minimizes the
ensemble performance. This being computationally expensive, we instead minimize under the
constraint T̂1 = · · · = T̂N

6

Results. Tab. 1 compares naive and post-hoc selection strategies for CIFAR-N and FMoW. Except
for some clean label sets, post-hoc selection is always better than naive selection, often with > 2×
improvement from post-hoc selection as compared to naive selection. It remains effective with out-

6Alternatively, one can select T̂j = argminT Mval
TS+T◦f (θ

j
1, . . . ,θ

j
T ) as a hybrid between post-hoc selection

(within runs) and naive selection (across runs).

8



0 1 2 3 4
Epochs

3

4

5
Perplexity

0 1 2 3 4
Epochs

29

31

33

CLM Error (%)

0 1 2 3 4
Epochs

44

46

48
MMLU (%)

Base
SWA+TS
SWA+Ens+TS
Naive selection
Post-hoc selection

Figure 9: Perplexity and causal language modeling (CLM) error on the Guanaco test set, and MMLU
accuracy (higher is better) for instruction tuning LLaMA-2-7B. Shading indicates post-hoc reversal.
Base and SWA+TS curves are mean of 8 runs; SWA+Ens+TS ensembles models from these runs.
Individual runs are not shown as they have high variance (see Tab. 7 in App. E).

of-distribution (OOD) val/test sets, as seen for FMoW (we use ID and OOD splits from WILDS [34]).
For some datasets, like C-100-N Noisy, post-hoc selection is only marginally better on test error.
Often, in such cases, the error floor is already quite high (e.g., C-100-N Noisy has ∼ 40% noise and
ResNet-18 has ∼ 10% error on clean C-100, so a test error of ∼ 50% is already impressive), and test
loss is a more appropriate metric.

Early stopping. We advocate monitoring post-hoc metrics for early stopping. Only a running average
needs to be updated for SWA, and TS involves a quick single-parameter optimization. Further, while
the base curves can fluctuate wildly between consecutive runs, SWA+TS curves are considerably
smoother (see Figs. 3, 11 and 10), making them more reliable for automated early stopping. One can
similarly monitor metrics for SWA+Ens+TS under parallel training runs.

7 Experiments Across Domains and Modalities

In § 4 and § 6, we introduced post-hoc reversal and selection with experiments on the CIFAR-N and
FMoW datasets. In this section, we supplement our experimental analysis with additional experiments
across diverse domains and modalities to demonstrate the generality of our findings.

7.1 LLM Instruction Tuning

Language models are pre-trained or fine-tuned with a self-supervised objective of predicting the
next token in a text corpus. There might be many acceptable tokens following a given prefix, albeit
with different probabilities. Thus next token prediction is noisy and one might reasonably expect
to see post-hoc reversal. In this section, we test this hypothesis for the task of fine-tuning LLMs
to follow instructions (instruction tuning [72]). Instruction tuning datasets are naturally small [85]
and amenable to multi-epoch training where catastrophic overfitting becomes an important concern.
Recent works [53, 81] have argued for data repetitions for LLM pre-training as well, but such
experiments are beyond the scope of this paper.

Experimental setup. We fine-tune LLaMA-2-7B [70] on the Guanaco dataset [12] of chat comple-
tions. We evaluate perplexity and causal language modeling (CLM) error on the test set, and also the
MMLU accuracy [24] to better contextualize model improvements. Fig. 9 shows the curves. Tab.
7 in App. E gives exact numbers, and App. F explores sub-epoch checkpointing. For TS, we use a
shared temperature parameter to scale the logits of all tokens and leave more involved strategies like
long-horizon temperature scaling [66] to future work.

Observations. We observe post-hoc reversal between epochs 1 and 2 for perplexity and error, and
between epochs 2 and 3 for MMLU. Both SWA+TS and SWA+Ens+TS transforms show significant
improvements, much of which is only realized under post-hoc selection.

7.2 Other Text, Tabular and Graph Datasets

In this section, we further expand our experimental coverage to text, tabular and graph classification
datasets from real-world applications.
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Figure 10: Test curves for 3 real-world noisy datasets. Note that the pre-TS loss is significantly higher
than the post-TS loss. Examples of post-hoc reversal between the base curves given by the solid blue
lines and the post-hoc curves given by the dashed orange lines (SWA ensemble): (1) optimal epoch is
different for base and post-hoc curves for error and post-TS loss on all datasets; (2) for error on Yelp,
base curve shows double descent but post-hoc curve does not; (3) for error on Income, base curve
overfits catastrophically at approx. epoch 5 but post-hoc curve continues improving till approx. epoch
20; (4) for error on Reddit-12k, base curve does not show double descent but post-hoc curve does.

Experimental setup. We consider the following tasks: (1) sentiment classification on the Yelp
reviews dataset [5] (text) with a pre-trained transformer BERT [13], (2) prediction tasks on census
data from Folktables [14] (tabular) with MLPs and (3) community detection on the Reddit and Collab
datasets [82] (graph) with graph neural networks (GNNs). Folktables has 5 prediction tasks: Income,
PublicCoverage, Mobility, Employment and TravelTime. Reddit has 2 versions: Reddit-5k and
Reddit-12k. For more details, see App. C. Figure 10 shows curves for Yelp, Income and Reddit-12k.
Tab. 5 in App. D compares naive and post-hoc selection on all datasets.

Observations. Post-hoc reversal is a recurring feature across datasets, transforms and metrics. The 3
datasets show different patterns between the base and post-hoc curves, showing that post-hoc reversal
can take a variety of forms.

8 Conclusion

We empirically studied temperature scaling (TS), ensembling, stochastic weight averaging (SWA) and
their compositions, and found that these transforms can reverse model peformance trends (post-hoc
reversal). Based on our findings, we presented the simple technique of post-hoc selection, and showed
that it outperforms naive selection. We validated our findings and proposals over diverse settings.

Our work has broad implications for the field of deep learning. It shows that current practices
surrounding the use of post-hoc transforms leave much room for improvement. This is especially
true for noisy data, which is pervasive in real-world applications. Future directions include better
strategies for checkpoint selection, developing a theoretical understanding, investigating impacts on
scaling laws, and characterizing other instances of post-hoc reversal.

Summary of practical recommendations. We advocate for the use of TS, ensembling and SWA
across deep learning applications. Further, such transforms should be tightly integrated into the
model development pipeline, following the methodology outlined in the paper. In particular: (1)
apply SWA+TS and SWA+Ens+TS transforms for better results in the single- and multi-model
settings respectively; (2) track temperature-scaled loss to overcome loss-error mismatch; (3) monitor
post-hoc metrics to avoid premature early stopping; (4) make hyperparameter decisions informed by
post-transform performance; (5) use post-hoc selection to pick model checkpoints.
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A Expanded Related Work

Phenomena. Empirical works like double descent [55], grokking [58], scaling laws [31], neural-
collapse [57], edge-of-stability [10], lottery-ticket-hypothesis [17] have revealed both challenges
and oppotunities for improving the understanding and practices of deep neural network training.
Post-hoc reversal expands this list as a novel phenomenon regarding learning dynamics under the
lens of post-hoc transforms. It is most intimately connected with double descent, offering a way to
mitigate it. Some works [7, 23, 54, 59, 65, 76] show other mitigations, such as regularization and
data augmentation.

Temperature Scaling (TS). TS belongs to a family of post-hoc calibration techniques [2, 19, 32, 66,
83], with the unique property of preserving classification error. Recently, calibration has been applied
to large vision and language models [11, 71, 84]. While loss-error mismatch has been reported
before [11, 19], to the best of our knowledge, we are the first to report post-hoc reversal with TS.

Ensembling. Ensembling is a foundational technique in machine learning, encompassing bagging,
boosting, etc. In deep learning, a uniform ensemble is most popular [3, 39], although recent work
on ensembling LLMs has explored more efficient routing-based ensembles [29, 46, 48, 49]. Various
works have explored strategies to form optimal ensembles [36, 47, 51, 77], generally based on model
diversity [38], but recently Abe et al. [1] have warned against this. In contrast, our recommendation
for forming ensembles relies directly on the validation performance of the ensemble, introducing no
proxies, and still being computationally cheap.

Stochastic Weight Averaging (SWA). SWA [28] is the culmination of a line of work [18, 25]
which seek to cheaply approximate ensembling. It has inspired numerous works which average
weights in some form [4, 6, 27, 41, 61, 77] often in combination with ensembling. Recently, weight
averaging has shown up in the LLM space [62, 64]. While these works generally apply SWA with
a fixed training time determined independently, we present SWA in the role of early stopping and
model selection. In practice, SWA has often been found to be unreliable7, and is often skipped from
training recipes even when considered [35, 75]. Our work sheds some light on this, offering a rather
counter-intuitive choice of models to include in the weight average for best results.

Noise. Many training strategies have been introduced to deal with noisy data (see [69] for a survey).
However, the efficacy of simple post-hoc transforms has been left unexplored. Further, most of these
works are motivated by labeling errors, which leaves some of the core practical considerations for
dealing with general noisy data unaddressed. For instance, access to a clean validation set is assumed
and test loss is overlooked as an important metric [43, 44]. We also entirely avoid experiments on
synthetic noise, informed by recent work which questions the transferability of findings to realistic
noise patterns [30, 73]. Some recent datasets [30, 40, 68, 73, 79] make it possible to study realistic
noise along with known noise estimates. Noise due to insufficient information in the input context
(Fig. 11) has also been studied under different settings, such as for RLHF [67].

Multi-epoch training of LLMs. Multi-epoch training of LLMs runs into severe catastrophic
overfitting. Xue et al. [81] examine the contributing factors and explore possible solutions. They
find that regularization is not helpful, except for dropout. Muennighoff et al. [53] study scaling laws
considering data repetitions. Complementarily, we put forward post-hoc transforms as an effective
solution with our post-hoc selection methodology. This is especially important for fine-tuning LLMs,
e.g. in instruction tuning [72], where [85] and [8] advocate for fine-tuning with a smaller amount of
higher quality samples for more epochs.

B Expanded Preliminaries and Background

B.1 Learning on Noisy Data

Figures 12, 11 and 13 illustrate various sources of noise: aleatoric unertainty, epistemic uncertainty
and annotation errors. Below we provide some background on Bayes-optimal classifier and use it to
introduce the clean error metric and Bayes loss/error as measures of noise level.

7See, for example, discussion at https://discuss.huggingface.co/t/improvements-with-swa/
858.
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(a) Gas Station (b) Educational Institution

Figure 11: Data can be noisy due to insufficient
information in the input context (epistemic uncer-
tainty). Figures 11a and 11b show satellite images
from the FMoW dataset. The labels are correct, as
corroborated by external map data. However, they
cannot be determined with full certainty from the
images alone.

Figure 12: Data can be noisy due to non-
determinism in the prediction target (aleatoric un-
certainty). Figure shows a message tree from the
OpenAssistant Converstations (OASST1) Dataset.
A chatbot can continue a conversation satisfacto-
rily in many different ways, making next token
prediction noisy.

(a) L: Cat
C: Frog

(b) L: Horse
C: Deer

(c) L: Airplane
C: Ship

(d) L: Bee
A: Sunflower

(e) L: Dolphin
A: Woman

(f) L: Mountain
A: Cloud

Figure 13: Data can be noisy due to annotation errors. Figures 13a, 13b and 13c are mislabeled
images from CIFAR-10. 13d, 13e and 13f are ambiguous images from CIFAR-100 with multiple
correct labels among the given classes. (L = label in dataset, C = correct label, A = alternative label)

Bayes-optimal classifier. fD, given by fD(x)k = logPD[y = k | x] minimizes both Merror
D and

Mloss
D , and is called the Bayes-optimal classifier for D. The Bayes error Merror

D [fD] and Bayes
loss Mloss

D [fD] are measures of the noise level. y∗(x) = argmaxk fD(x)k is sometimes called
the clean label. Using y∗, one may define the clean data distribution D̃ with PD̃[x] = PD[x] and
PD̃[y | x] = 1{y = y∗(x)}. The clean error Merror

D̃
is a common metric in the label noise literature

but not a focus of our work as y∗ is typically inaccessible in more general noisy settings.

B.2 Post-Hoc Transforms in Machine Learning

The explicit forms of the composed transforms SWA+TS and SWA+Ens+TS (denoted as TS+T and
TS+E+T) are given by Equations 4 and 5 respectively. For TS+E+T, parameters θl

1, . . . ,θ
l
Kl

are weight-
averaged and the L resulting models are ensembled, followed by temperature scaling. τl is the
temperature for weight-averaged models, and τEns is the temperature for the ensemble. As before,
they are obtained by optimizing the cross-entropy loss over the validation set, with model parameters
fixed.

(TS+T◦f) (x;θ1, . . . ,θK) =
1

τ
f
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Table 2: Dataset Details.
Modality Dataset Train Size Val Size Test Size Classes Input Size Units

Vision

CIFAR-10 40000 5000 5000 10 3 × 32 × 32

C × W × HCIFAR-100-N Coarse 40000 5000 5000 20 3 × 32 × 32
CIFAR-100-N Fine 40000 5000 5000 100 3 × 32 × 32
FMoW 76863 11483 11327 62 3 × 224 × 224

Text Guanaco 8850 500 500 32000 ≲ 4000 charactersYelp 25000 5000 5000 5 ≲ 2000

Tabular

Income 156533 19566 19566 2 816

features
Public Coverage 110844 13855 13855 2 88
Mobility 64265 8032 8032 2 101
Employment 303055 37881 37881 2 98
Travel Time 138008 17250 17250 2 615

Graph
Collab 4000 500 500 3 74.49, 2457.78 nodes, edges

(avg.)Reddit-5k 4001 499 499 5 508.52, 594.87
Reddit-12k 9545 1192 1192 11 391.41, 456.89

Table 3: Training Details.

Dataset Model Pre-
train Optimizer LR Weight

Decay LR Schedule Epochs Batch
Size

C-10/100-N ResNet18-D [22] Yes SGD 0.1 5e-4 Cosine 100 500
FMoW DenseNet121 [26] Yes Adam 1e-4 0 Constant 50 64
Guanaco LLaMA-2-7B [70] Yes Adam 2e-4 0 Constant 6 16
Yelp BERT [13] Yes AdamW 5e-5 1e-2 Linear 25 16
Folktables MLP No Adam 0.01 0 Exponential 50 256
Collab GIN [80] No Adam 0.01 0 Exponential 500 128
Reddit GCN [33] No Adam 0.01 0 Exponential 500 128

C Dataset and Training Details

Tabs. 2 and 3 summarize the datasets and training details for our experiments. They are described
in detail below. We trained our models under these hyperparameters on 48 GB A6000 GPUs in a
single-GPU setup, except for LLaMA-2-7B fine-tuning on Guanaco, for which we used 80 GB A100
GPUs. Single model training completes in a few hours for all datasets except FMoW and Guanaco,
on which training took upto 12 hours. We experiment most extensively on the CIFAR-N datasets,
where our optimized script can train a single model in 3-5 minutes on an A6000 GPU.

CIFAR-N [74]. CIFAR-10-N uses the same images as CIFAR-10 but provides multiple human-
annotated label sets. Clean is the original label set; Rand1,2,3 are 3 sets of human labels; Aggre
combines Rand1,2,3 by majority vote; and Worst combines them by picking an incorrect label, if
possible. CIFAR-100 has 2 variants, a fine-grained one with 100 classes and a coarse-grained one with
20 classes, obtained by grouping the fine-grained classes. Correspondingly, there are CIFAR-100-N
Coarse and CIFAR-100-N Fine datasets. They have two label sets each: Clean and Noisy, with the
latter being human-labeled. In the main paper, CIFAR-100-N refers to the fine-grained version.

By cross-referencing with the original labels, it is possible to estimate the noise levels. These are
shown in Table 4.

CIFAR-N allows access to clean labels. In the literature, the validation and test sets for CIFAR-N
typically use the clean labels [42, 45, 78]. However, access to clean labels is a luxury only available
for label noise settings. Even there, obtaining clean labels is expensive, as it requires careful expert
annotation. For other sources of noise it might not even be feasible to obtain clean labels. Hence, we
restrict ourselves to using noisy (i.i.d. to train) validation and test sets. Since CIFAR-N only provides

Table 4: Noise levels for CIFAR-N (%), reproduced from [74].
CIFAR-10-N CIFAR-100-N Coarse CIFAR-100-N Fine

Clean Aggre Rand1 Rand2 Rand3 Worst Clean Noisy Clean Noisy

0.00 9.03 17.23 18.12 17.64 40.21 0.00 25.60 0.00 40.20
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Table 5: Naive vs post-hoc (ours) selection for SWA+TS and SWA+Ens+TS transforms on some
real-world datasets. Better values are in bold.

Metric → Test Loss Test Error (%)

Transform → None SWA+TS SWA+Ens+TS None SWA+TS SWA+Ens+TS

Dataset ↓ Naive Ours Naive Ours Naive Ours Naive Ours

Yelp 0.908 0.890 0.854 0.841 0.824 39.41 38.02 37.33 36.18 36.14

Income 0.393 0.390 0.387 0.388 0.385 17.84 17.69 17.54 17.62 17.40
PublicCoverage 0.544 0.540 0.539 0.538 0.538 27.52 27.31 27.25 27.25 27.02
Mobility 0.474 0.472 0.471 0.471 0.468 21.43 21.38 21.42 21.17 21.24
Employment 0.380 0.379 0.378 0.378 0.377 17.94 17.77 17.80 17.72 17.83
TravelTime 0.597 0.597 0.593 0.596 0.591 35.77 35.46 35.35 35.44 35.23

Collab 0.492 0.475 0.460 0.439 0.404 20.65 21.58 20.27 20.40 18.80
Reddit-5k 1.154 1.112 1.100 1.101 1.085 47.42 48.35 47.04 47.09 45.49
Reddit-12k 1.405 1.381 1.366 1.367 1.346 51.78 51.08 51.11 50.34 51.26

human labels for the original 50k CIFAR-10/100 train images, we split these into 40k/5k/5k images
for train/val/test sets.

FMoW [9, 34]. This is the version of the original FMoW dataset [9] as used in the WILDS benchmark
[34]. For FMoW (ID) we use the in-distribution val and test sets, and for FMoW (OOD), we use
the out-of-distribution val and test sets, where the val set is shifted with respect to the train set,
and the test set is shifted with respect to both the train and val sets. All splits are as provided by
WILDS. The input is an RGB satellite image (rescaled to 224 x 224 pixels) and the label is one of
62 building or land use categories. The labels were obtained by a combination of human annotation
and cross-referenced geographical information. The original dataset provides additional metadata
about location, time, sun angles, physical sizes, etc. which is ignored in the WILDS dataset (and
hence in ours). While the labels have low noise compared to the ground-truth, this dataset is noisy
because of insufficient information. It is hard to disambiguate the building or land use category with
full certainty by looking at the satellite image alone. See Figure 11. Models and training setup are as
used in [9, 34], except for the LR schedule, where we experiment with multiple alternatives.

Guanaco [12]. This is a subset of the OASST1 dataset [37] containing only the highest-rated paths in
the conversation tree. We follow the fine-tuning setup from [12], except that we use vanilla fine-tuning
without any quantization or low-rank adapters.

Yelp [5]. This is a subset of the Yelp Dataset Challenge 2015 dataset with 25k reviews in the train set
and 5k reviews each in the validation and test sets. The input is a review text and the label is one of
5 classes (1 to 5 stars). Assigning a rating to a review is intrinsically non-deterministic as different
reviewers might have different thresholds for the star ratings. This introduces noise in the data.

Folktables [14]. Folktables consists of 5 classification tasks based on the US Census: Income,
Employment, Health, TravelTime and PublicCoverage. The data is tabular. The available feature
columns do not contain sufficient information to predict the targets with full certainty, even if the
Census recorded the ground-truth labels with high accuracy. This results in noise.

Collab and Reddit [52, 82]. These datasets are from TUDataset [52], and were originally introduced
by Yanardag and Vishwanathan [82]. Collab is a scientific collaboration dataset. The input is an
ego-network of a researcher and the label is the field of the researcher (one of High Energy Physics,
Condensed Matter Physics and Astro Physics). The Reddit-5k and Reddit-12k datasets (originally
called REDDIT-MULTI-5K and REDDIT-MULTI-12K) are balanced datasets where the input is a
graph which corresponds to an online discussion thread from the social network site Reddit. Nodes
correspond to users and there is an edge if one user responded to another’s comment. The task is to
predict which subreddit a discussion graph belongs to. Reddit-5k is smaller with 5k examples and 5
classes. Reddit-12k is bigger with 12k examples and 11 classes.
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Table 6: Detailed results for CIFAR-N datasets. Base denotes no transform and Final denotes the
SWA+Ens+TS transform. Gain shows performance improvement. ∆ shows change from naive
selection to post-hoc selection. Since Base and Gain columns involve 8 individual runs, we report
mean±std. dev. of the metric. C-10-N, C-100-N-C and C-100-N-F are shorthands for CIFAR-10-N,
CIFAR-100-N Coarse and CIFAR-100-N Fine respectively.

Metric → Test Loss Test Error (%)

Dataset ↓ Select ↓ Epochs Base Final Gain Epochs Base Final Gain

C-10-N
Clean

Naive 90±9 0.435±0.012 0.234 0.201±0.012 92±5 9.75±0.24 8.30 1.45±0.24

Post-hoc 100 0.433±0.009 0.233 0.200±0.009 96 9.82±0.27 8.24 1.58±0.27

∆ ↑ 10±9 ↓ 0.001±0.005 ↓ 0.001 – ↑ 4±5 ↑ 0.07±0.10 ↓ 0.06 –

C-10-N
Aggre

Naive 10±3 0.722±0.018 0.608 0.114±0.018 94±6 19.20±0.39 15.88 3.33±0.39

Post-hoc 53 0.977±0.030 0.543 0.434±0.030 58 22.21±0.62 15.74 6.47±0.62

∆ ↑ 43±3 ↑ 0.255±0.027 ↓ 0.065 – ↓ 36±6 ↑ 3.00±0.73 ↓ 0.14 –

C-10-N
Rand1

Naive 8±2 1.009±0.008 0.916 0.093±0.008 22±32 28.63±0.57 24.80 3.83±0.57

Post-hoc 31 1.189±0.017 0.859 0.330±0.017 67 31.58±0.51 23.50 8.08±0.51

∆ ↑ 23±2 ↑ 0.181±0.018 ↓ 0.057 – ↑ 44±32 ↑ 2.95±0.95 ↓ 1.30 –

C-10-N
Rand2

Naive 10±1 1.040±0.008 0.931 0.108±0.008 14±6 29.90±0.42 25.44 4.47±0.42

Post-hoc 30 1.189±0.037 0.888 0.301±0.037 74 31.15±0.38 24.12 7.02±0.38

∆ ↑ 20±1 ↑ 0.150±0.038 ↓ 0.043 – ↑ 60±6 ↑ 1.24±0.56 ↓ 1.32 –

C-10-N
Rand3

Naive 9±2 1.005±0.014 0.910 0.095±0.014 24±30 28.96±0.65 24.86 4.10±0.65

Post-hoc 32 1.179±0.027 0.864 0.315±0.027 38 32.39±0.68 23.44 8.95±0.68

∆ ↑ 23±2 ↑ 0.174±0.031 ↓ 0.046 – ↑ 14±30 ↑ 3.43±1.03 ↓ 1.42 –

C-10-N
Worst

Naive 8±2 1.511±0.008 1.437 0.073±0.008 10±3 46.84±0.56 44.30 2.54±0.56

Post-hoc 25 1.643±0.019 1.399 0.245±0.019 24 49.67±0.74 42.88 6.79±0.74

∆ ↑ 17±2 ↑ 0.133±0.018 ↓ 0.039 – ↑ 14±3 ↑ 2.83±0.94 ↓ 1.42 –

C-100-N-C
Clean

Naive 33±35 1.011±0.014 0.669 0.342±0.014 91±4 23.12±0.40 19.36 3.76±0.40

Post-hoc 100 1.040±0.019 0.606 0.435±0.019 72 24.39±0.43 19.52 4.87±0.43

∆ ↑ 67±35 ↑ 0.029±0.023 ↓ 0.063 – ↓ 19±4 ↑ 1.27±0.26 ↑ 0.16 –

C-100-N-C
Noisy

Naive 8±2 1.431±0.008 1.234 0.198±0.008 40±41 41.42±0.45 34.42 7.00±0.45

Post-hoc 32 1.744±0.049 1.150 0.594±0.049 38 45.45±0.98 33.54 11.91±0.98

∆ ↑ 24±2 ↑ 0.313±0.048 ↓ 0.084 – ↓ 2±41 ↑ 4.03±1.13 ↓ 0.88 –

C-100-N-F
Clean

Naive 93±5 1.508±0.017 1.065 0.443±0.017 88±5 33.83±0.37 29.90 3.93±0.37

Post-hoc 75 1.567±0.019 1.063 0.504±0.019 95 33.86±0.53 29.94 3.92±0.53

∆ ↓ 18±5 ↑ 0.059±0.014 ↓ 0.002 – ↑ 7±5 ↑ 0.03±0.31 ↑ 0.04 –

C-100-N-F
Noisy

Naive 7±2 2.416±0.022 2.129 0.287±0.022 91±7 58.68±0.49 51.34 7.34±0.49

Post-hoc 27 3.015±0.079 1.994 1.021±0.079 32 63.53±0.55 50.26 13.27±0.55

∆ ↑ 20±2 ↑ 0.598±0.075 ↓ 0.135 – ↓ 59±7 ↑ 4.85±0.60 ↓ 1.08 –

D Post-Hoc Selection Results for Remaining Datasets

Table 5 compares naive and post-hoc selection for datasets not covered in the main paper. Post-hoc
selection is mostly better than naive selection, although with varying margins. Post-hoc selection is
sometimes worse, but only marginally8.

E Detailed Results

Tables 6, 7, and 8 provide detailed results for CIFAR-N, LLM instruction tuning, and other datasets
respectively.

F Optimal Checkpointing for Small Number of Epochs

Throughout the main paper, we use a checkpoint interval of 1 epoch. For small-epoch settings, such
as LLM pre-training or fine-tuning, it might be better to checkpoint more frequently, at fractional
epochs. In this section, we investigate the impact of checkpoint interval on the best MMLU score,
and the epoch at which it is achieved, for the LLM instruction tuning setup of § 7.1.

8This may be attributed to (1) picking the same epoch for all runs in post-hoc selection, and (2) generalization
error between validation and test sets for the selected epoch.
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Table 7: Detailed results for LLM instruction tuning. Better values are in bold. Since Base and Gain
columns involve 8 individual runs, we report mean±std. dev. of the metric.

Transform → None SWA+TS SWA+Ens+TS

Metric ↓ Naive Ours Naive Ours

Perplexity 3.756 3.471 3.461 3.245 3.142
Error 32.84 30.81 29.68 30.16 28.93
MMLU 46.64 46.78 47.03 47.23 47.54

Table 8: Detailed results for other datasets. See Table 6 caption for a description.
Objective → Test Loss Test Error (%)

Dataset ↓ Select ↓ Epochs Base Final Gain Epochs Base Final Gain

FMoW (ID)
Naive 2±0 1.583±0.014 1.494 0.089±0.014 15±19 43.20±0.46 37.95 5.24±0.46

Post-hoc 50 2.831±0.053 1.305 1.526±0.053 48 43.18±0.55 34.93 8.24±0.55

∆ ↑ 48±0 ↑ 1.248±0.062 ↓ 0.189 – ↑ 33±19 ↓ 0.02±0.80 ↓ 3.02 –

FMoW (OOD)
Naive 2±0 1.831±0.018 1.700 0.131±0.018 3±1 49.32±0.38 46.74 2.58±0.38

Post-hoc 50 3.399±0.050 1.571 1.828±0.050 50 50.08±0.38 41.56 8.52±0.38

∆ ↑ 48±0 ↑ 1.567±0.054 ↓ 0.129 – ↑ 47±1 ↑ 0.75±0.66 ↓ 5.19 –

Yelp
Naive 2±1 0.908±0.008 0.841 0.067±0.008 9±8 39.41±0.76 36.18 3.23±0.76

Post-hoc 3 0.990±0.044 0.824 0.166±0.044 3 40.28±1.29 36.14 4.14±1.29

∆ ↑ 1±1 ↑ 0.082±0.040 ↓ 0.017 – ↓ 6±8 ↑ 0.87±1.16 ↓ 0.04 –

Income
Naive 5±1 0.393±0.001 0.388 0.005±0.001 7±2 17.84±0.15 17.62 0.22±0.15

Post-hoc 11 0.421±0.007 0.385 0.036±0.007 19 19.21±0.14 17.40 1.81±0.14

∆ ↑ 6±1 ↑ 0.028±0.006 ↓ 0.003 – ↑ 12±2 ↑ 1.37±0.22 ↓ 0.22 –

Public
Coverage

Naive 10±2 0.544±0.001 0.538 0.006±0.001 12±3 27.52±0.24 27.25 0.28±0.24

Post-hoc 18 0.554±0.002 0.538 0.016±0.002 22 27.96±0.21 27.02 0.94±0.21

∆ ↑ 8±2 ↑ 0.010±0.002 ↓ 0.000 – ↑ 10±3 ↑ 0.44±0.25 ↓ 0.22 –

Mobility
Naive 6±2 0.474±0.002 0.471 0.003±0.002 13±5 21.43±0.18 21.17 0.26±0.18

Post-hoc 14 0.476±0.003 0.468 0.008±0.003 11 21.40±0.17 21.24 0.16±0.17

∆ ↑ 8±2 ↑ 0.002±0.003 ↓ 0.003 – ↓ 2±5 ↓ 0.03±0.22 ↑ 0.07 –

Employment
Naive 8±1 0.380±0.000 0.378 0.003±0.000 14±4 17.94±0.08 17.72 0.22±0.08

Post-hoc 15 0.383±0.001 0.377 0.006±0.001 30 18.27±0.12 17.83 0.43±0.12

∆ ↑ 7±1 ↑ 0.003±0.001 ↓ 0.000 – ↑ 16±4 ↑ 0.33±0.16 ↑ 0.11 –

Travel
Time

Naive 6±2 0.597±0.002 0.596 0.001±0.002 9±1 35.77±0.34 35.44 0.32±0.34

Post-hoc 15 0.626±0.003 0.591 0.035±0.003 16 36.40±0.20 35.23 1.17±0.20

∆ ↑ 8±2 ↑ 0.029±0.003 ↓ 0.005 – ↑ 7±1 ↑ 0.64±0.42 ↓ 0.21 –

Collab
Naive 52±18 0.492±0.044 0.439 0.053±0.044 75±28 20.65±1.06 20.40 0.25±1.06

Post-hoc 163 1.075±0.122 0.404 0.671±0.122 152 20.95±1.26 18.80 2.15±1.26

∆ ↑ 111±18 ↑ 0.583±0.146 ↓ 0.035 – ↑ 77±28 ↑ 0.30±1.31 ↓ 1.60 –

Reddit-5k
Naive 15±4 1.154±0.022 1.101 0.053±0.022 13±5 47.42±0.64 47.09 0.33±0.64

Post-hoc 44 1.448±0.058 1.085 0.362±0.058 45 50.75±1.83 45.49 5.26±1.83

∆ ↑ 29±4 ↑ 0.294±0.059 ↓ 0.015 – ↑ 32±5 ↑ 3.33±2.05 ↓ 1.60 –

Reddit-12k
Naive 16±3 1.405±0.011 1.367 0.038±0.011 17±4 51.78±1.05 50.34 1.45±1.05

Post-hoc 41 1.585±0.023 1.346 0.239±0.023 64 55.85±0.97 51.26 4.59±0.97

∆ ↑ 25±3 ↑ 0.180±0.027 ↓ 0.021 – ↑ 47±4 ↑ 4.07±1.59 ↑ 0.92 –

Figs. 14a and 14b show the results. We find that a checkpointing interval of 0.7 epochs gives the
best results, with higher and lower intervals performing slightly worse. This makes sense—higher
intervals include too few checkpoints for SWA, lower ones include too many weaker checkpoints
from earlier in training.

Also, we find that the optimal epoch is shifted further at smaller checkpointing intervals (by about 2
epochs when the checkpointing interval is 0.1 epochs), showing that post-hoc reversal is even more
important in this setting. This is likely because with more checkpoints being averaged, even more
overfitted checkpoints can be accomodated while still increasing the overall performance.

G Visualizing Post-Hoc Reversal on a Synthetic Dataset

Here, we replicate post-hoc reversal on a synthetic dataset with 2 input features, with the aim of
visualizing learnt decision surfaces to solidify our intuitions.
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Figure 14: Best MMLU and epoch at which it is achieved vs checkpoint-
ing interval, for the LLM instruction tuning setup of § 7.1. Checkpointing
every 0.7 epochs gives the best results. Best epoch is shifted further at
smaller checkpointing intervals, i.e. post-hoc reversal is more prominent
in this setting.

Figure 15: The syn-
thetic dataset setup in
§ G exhibits post-hoc
reversal between
epochs 440 and 1000.

Figure 16: Decision surfaces of 2 models and the ensemble (of 16 models) on a synthetic 2D dataset
of spirals, at epochs 440 and 1000, between which post-hoc reversal occurs (Fig. 15).

We train 4-layer MLPs with 512 ReLU units per hidden layer on a 2-class spirals dataset of 1000
training examples, with 20% of the labels flipped at random. We train 16 MLPs and track the mean
test error across epochs, as well as the test error of the ensemble (Fig. 15).

As per [3, 16] ensembling and SWA help when the data has a "multi-view" structure, or equivalently,
the loss landscape has multiple modes. This is hard to achieve for 2D datasets, so instead we simulate
the effect by training each MLP on a random 50% subsample of the training data.

Fig. 16 shows decision surfaces at epochs 440 and 1000 for 2 MLPs and the ensemble. Decision
boundaries are spiky around noisy examples and smoother around clean ones. While the generalizable
parts of the spiral are retained in the ensemble, the effects of noisy examples are diminished. Between
epochs 440 and 1000, individual models spike around noisy examples more prominently than they
learn new parts of the spiral, but the ensemble surface is relatively unchanged, except for small
improvements to learning the spiral.

This reinforces our intuitions from § 5 that mislabeled examples have a more unstable influence on
the decision boundary, and post-hoc transforms exploit this to reduce their impact, while amplifying
generalizable patterns learnt from clean examples.
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Table 9: Naive vs post-hoc (ours) selection for CIFAR-N trained with cross-entropy (CE) loss.
Better values are in bold.

Metric → Test Loss Test Error (%)

Transform → None SWA+TS SWA+Ens+TS None SWA+TS SWA+Ens+TS

Dataset ↓ Naive Ours Naive Ours Naive Ours Naive Ours

C-10-N Clean 0.435 0.269 0.270 0.234 0.233 9.75 9.09 9.10 8.30 8.24
C-10-N Aggre 0.722 0.663 0.585 0.608 0.543 19.20 17.08 16.95 15.88 15.74
C-10-N Rand1 1.009 0.968 0.907 0.916 0.859 28.63 27.13 24.84 24.80 23.50
C-10-N Rand2 1.040 0.983 0.935 0.931 0.888 29.91 27.60 25.69 25.44 24.12
C-10-N Rand3 1.005 0.963 0.911 0.910 0.864 28.96 26.91 25.09 24.86 23.44
C-10-N Worst 1.511 1.483 1.443 1.437 1.399 46.84 46.12 44.14 44.30 42.88

Clean 1.011 0.786 0.686 0.669 0.606 23.12 21.30 21.38 19.36 19.52
Noisy 1.431 1.330 1.235 1.234 1.150 41.42 38.08 35.87 34.42 33.54

C-100-N Clean 1.508 1.215 1.205 1.065 1.063 33.83 32.67 32.69 29.90 29.94
C-100-N Noisy 2.416 2.289 2.136 2.129 1.994 58.68 54.94 53.18 51.34 50.26

Table 10: Naive vs post-hoc (ours) selection for CIFAR-N trained with SOP loss. Better values are in
bold.

Metric → Test Loss Test Error (%)

Transform → None SWA+TS SWA+Ens+TS None SWA+TS SWA+Ens+TS

Dataset ↓ Naive Ours Naive Ours Naive Ours Naive Ours

C-10-N Clean 0.425 0.270 0.269 0.236 0.235 9.65 8.82 8.81 7.96 8.00
C-10-N Aggre 0.728 0.693 0.573 0.634 0.541 18.03 16.55 16.56 15.58 15.56
C-10-N Rand1 1.025 0.980 0.888 0.925 0.851 26.91 24.53 24.50 23.20 23.14
C-10-N Rand2 1.045 1.015 0.920 0.957 0.883 27.39 25.34 25.25 24.12 24.16
C-10-N Rand3 1.016 0.975 0.889 0.921 0.851 26.66 24.23 24.23 23.02 22.96
C-10-N Worst 1.514 1.492 1.451 1.447 1.413 46.78 46.26 44.29 44.50 42.78

Clean 1.018 0.742 0.686 0.623 0.608 23.07 21.43 21.47 19.18 19.78
Noisy 1.427 1.347 1.229 1.247 1.145 41.39 38.01 35.85 34.32 33.94

C-100-N Clean 1.513 1.213 1.203 1.063 1.061 33.79 32.66 32.68 29.46 29.56
C-100-N Noisy 2.415 2.268 2.137 2.118 1.997 58.34 54.76 53.48 51.06 50.54

H Noise-Aware Training

While our experiments in the main paper use the standard cross-entropy (CE) loss, here we consider
two leading training objectives from the label noise literature: (1) SOP [45] and (2) ELR [42]. Tables
9, 10 and 11 compare naive and post-hoc selection strategies for CIFAR-N datasets under CE, SOP
and ELR losses respectively. Here again we find that post-hoc selection is superior to naive selection
in general. We also note that the differences between CE, SOP and ELR are minimal. This is likely
because we use i.i.d. (and therefore noisy) validation and test sets, unlike the original papers which
use clean validation and test sets.

Table 11: Naive vs post-hoc (ours) selection for CIFAR-N trained with ELR loss. Better values are
in bold.

Metric → Test Loss Test Error (%)

Transform → None SWA+TS SWA+Ens+TS None SWA+TS SWA+Ens+TS

Dataset ↓ Naive Ours Naive Ours Naive Ours Naive Ours

C-10-N Clean 0.421 0.271 0.269 0.233 0.232 9.53 8.92 9.01 7.98 7.92
C-10-N Aggre 0.730 0.659 0.584 0.606 0.541 19.02 16.86 16.80 15.34 15.52
C-10-N Rand1 1.019 0.975 0.911 0.921 0.864 29.42 26.68 24.86 24.30 23.56
C-10-N Rand2 1.042 0.994 0.939 0.941 0.893 29.79 27.98 25.74 26.12 24.50
C-10-N Rand3 1.004 0.964 0.913 0.912 0.866 28.80 26.68 24.84 24.52 23.32
C-10-N Worst 1.508 1.492 1.443 1.444 1.397 46.94 46.27 44.03 44.64 42.48

Clean 1.030 0.760 0.686 0.644 0.605 23.07 21.27 21.40 19.28 19.24
Noisy 1.415 1.317 1.236 1.228 1.152 41.55 38.40 35.74 34.72 33.60

C-100-N Clean 1.518 1.223 1.210 1.070 1.068 34.05 32.92 32.97 29.68 29.66
C-100-N Noisy 2.432 2.287 2.140 2.130 1.997 58.85 54.84 53.24 50.86 50.50
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I Limitations

We find post-hoc reversal to be an important phenomenon when the base curve exhibits performance
degradation due to overfitting. However, under some scenarios, the base curve shows a monotonic
improvement in performance with additional training (or increasing model size). Examples include:
(1) the data has low noise, (2) the training is heavily regularized, and (3) there is an abundance of
data, so that a single data point is not repeated enough to cause overfitting. In such cases, post-hoc
selection outcomes are similar to naive selection. Since our suggested approach only ensembles
models trained for the same number of epochs during post-hoc selection, it does not subsume the
naive selection search space, leading to marginally worse performance sometimes, although this can
be easily overcome in practice.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see App. I.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code to reproduce experiments is available at https://anonymous.4open.
science/r/post-hoc-reversal. Comprehensive dataset and training details are pro-
vided in App. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: Please see code (including instructions to download data and reproduce the
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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benchmark).
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see App. C. In particular, see Tab. 3 for training details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Tabs. 6 and 8 for detailed results with standard deviations. We don’t
report error bars for ensembles as it is computationally prohibitive to train many independent
ensembles.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see App. C for training details, including compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in Sec. 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and models used in this paper are under permissive licenses
allowing for research use. We have credited their authors by exhaustively citing sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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