
Exploiting Epochs and Symmetries in Analysing MPI Programs
Rishabh Ranjan

IIT Delhi
India

cs1180416@iitd.ac.in

Ishita Agrawal
IIT Delhi
India

mt1190695@iitd.ac.in

Subodh Sharma
IIT Delhi
India

svs@cse.iitd.ac.in

ABSTRACT

Communication nondeterminism is one of the main reasons for
the intractability of verification of message passing concurrency. In
many practical message passing programs, the non-deterministic
communication structure is symmetric and decomposed into epochs
to obtain efficiency. Thus, symmetries and epoch structure can be
exploited to reduce verification complexity. In this paper, we present
a dynamic-symbolic runtime verification technique for single-path
MPI programs, which (i) exploits communication symmetries by
way of specifying symmetry breaking predicates (SBP) and (ii)
performs compositional verification based on epochs. On the one
hand, SBPs prevent the symbolic decision procedure from exploring
isomorphic parts of the search space, and on the other hand, epochs
restrict the size of a program needed to be analyzed at a point in
time. We show that our analysis is sound and complete for single-
path MPI programs on a given input. Using our prototype tool
SIMIAN, we further demonstrate that our approach leads to (i) a
significant reduction in verification times and (ii) scaling up to
larger benchmark sizes compared to prior trace verifiers.

CCS CONCEPTS

• Software and its engineering → Formal software verifica-

tion; Distributed programming languages.

KEYWORDS

symmetry breaking, MPI, verification, deadlocks

ACM Reference Format:

Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma. 2022. Exploiting
Epochs and Symmetries in Analysing MPI Programs. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3551349.3556954

1 INTRODUCTION

The message passing (MP) paradigm is the lingua franca for devel-
oping large communicating distributed programs such as those in
high-performance scientific computing applications developed us-
ing Message Passing Interface (MPI). A common feature in such ap-
plications is the presence of communication nondeterminism, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556954

is primarily used to obtain efficiency by masking network laten-
cies. Under the said nondeterminism, a process can post (possibly
asynchronous) receive calls that can potentially match any of the
messages sent. Evidently, communication nondeterminism is an
important driver of intractability verification for reachability prop-
erties in message-passing programs [13, 19].

The focus of this work is programs developed using MPI. As
it emerges, many MPI programs (or just programs) usually have
symmetric communication patterns; for instance, in amesh network
topology, a process’s communication with its top, left, right and
bottom neighbor is similar to every other process’s communica-
tion behavior. Also, it is not uncommon to see that communication
in a program takes place in phases (called epochs) wherein every
communication call invoked in a phase is matched within that
phase.

This paper uses symmetry and epoch-styled communication pat-
terns to design an analysis technique for detecting communication
deadlocks in single-path [14] MPI programs. Communication dead-
locks (or just deadlocks) are common and hard-to-detect error in
MPI programs. Each member process is in an indefinite cyclic-wait
for some member process to communicate with it. The presence
of nondeterminism in message reception can lead to a situation
where the witnessed program execution may complete successfully.
However, an alternate execution with a different order of message
reception may lead to a deadlock. Single-path programs are where
the order of instructions from a process is deterministic. In other
words, the program’s control-flow is not affected by the commu-
nicated data. Indeed, the single-path property limits the degree of
program nondeterminism but is still significant and has formed
the basis of prior studies [14, 18, 20, 30]. The problem of detecting
deadlocks is NP-complete for single-path programs [13].

In prior single-path analyzers, the set of feasible runs of a pro-
gram on a concrete input is symbolically encoded into a proposi-
tional SAT or SMT formula. Inevitably, SAT/SMT solving for larger
instances of such encodings ends up consuming an unreasonably
long time. However, in many instances, the solver is stuck on exam-
ining symmetric runs of a program. Pruning them can potentially
speed up the solving time. This observation serves as the basis for
our work.
Contributions. (C1) As the first contribution of this work, we present
a theoretical framework and an encoding where symmetries are ex-
ploited byway of specifying symmetry breaking predicates (SBPs) [6].
The additional constraints, in the form of SBPs, eliminate symmet-
ric solutions (which are isomorphic parts of the search space). As a
result, SBPs can bring about exponential savings in the constraint
solver’s solving times.

(C2) Detecting symmetries over the entire program can be ex-
pensive. Additionally, symmetry may not always manifest globally

https://doi.org/10.1145/3551349.3556954
https://doi.org/10.1145/3551349.3556954
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3556954&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

through the program but may exist locally. As our second contri-
bution, we present an analysis for detecting and decomposing a
program into epochs. Epoch decompostion facilitates compositional
analysis of a program by analysing each epoch in isolation. It also
serves an additional advantage as its combinations with C1 may
yield more reductions than those obtained by applying C1 or C2 in
isolation.

(C3) We show that symmetry reductions and epoch decomposi-
tions are sound and complete, i.e., report a deadlock if and only if
there is a real deadlock in single-path MPI programs.

(C4) We implement the above two techniques as a dynamic-
symbolic runtime analysis tool called SIMIAN1. We demonstrate
empirically that SIMIAN is significantly more efficient than existing
dynamic-symbolic trace verifiers such asMOPPER [14] andMOPPER-
opt [13].

2 PRELIMINARIES

The following text presents the necessary definitions relating to
MPI process modeling and process symmetries.
Process Model. A single-path MPI program (or just MPI pro-
gram), P, is assumed to be a collection of N processes denoted
by P1, . . . , PN . Each process executes a sequence of MPI actions.
We denote an action from process Pi at index j (the position within
the process) as ai, j . The permitted MPI actions considered in this
work are nonblocking sends and receives, blocking waits, and block-
ing barriers.

A nonblocking send from Pi to Pj at index k ∈ N is denoted as
Si,k (j). The send action asynchronously transfers the data from the
source process to the destination process. A nonblocking receive
from Pj to Pi at index k is denoted as Ri,k (j). The special wild-
card receive (which can accept a message from any source process)
is denoted by replacing the destination process identifier by ∗. A
blocking wait action is denoted asWi,k (hi, j) where hi, j denotes
handle of the associated nonblocking action from Pi . A wait action
returns upon the successful completion of the associated nonblock-
ing action. For instance, wait action on a nonblocking receive will
return only after the sent message is copied fully into the receiver’s
address space. It is worth noting that synchronous send (resp. re-
ceive) action can be modeled by issuing a wait action immediately
after the send (resp. receive) action. A barrier from a process is a
system-wide synchronizing event which blocks until all processes
have reached the same barrier. Since barriers in a program are to-
tally ordered, the kth barrier action from Pi at index j is denoted
as Bi, j (k). The collection of kth barriers from each process in the
system forms a barrier group.

Let C be the set of all MPI actions in a program. We present
the semantics of an MPI program, which builds on the notions
of matching and ordering of actions. Informally, matching actions
are those that together form a valid communication. Instances of
valid communication are: (i) a send and its matching receive, (ii)
a nonblocking request and its associated wait, or (iii) a barrier
group. Formally, we define a total order on actions from a process
(Definition 2.1) and the partial order in which actions from a process
will match (Definition 2.2, borrowed from [14]).

1https://github.com/rishabh-ranjan/simian

Definition 2.1 (Process order). A strict total order < is defined for
all actions ai,k and bj,l as follows: ai,k < bj,l iff i = j ∧ k < l .

Definition 2.2 (Matches-before order). A strict partial order ≺⊆
C ×C is the smallest matches-before order s.t. for all c1, c2 ∈ C, c1 ≺
c2 iff c1 < c2 and one of the following is true:
• c1 is blocking
• c1 and c2 are nonblocking sends (resp. receives excluding
wildcards) to (from) the same destination (resp. source).
• c1 is a nonblocking call and c2 is an associated wait call
• c1 is a wildcard receive and c2 is either a wildcard receive or
a receive from Pk for some k

Under system buffering, a nonblocking send, c1, can complete
before the associated wait, c2, but may match afterwards. For such
send calls, we replace their matching guarantee with completion
guarantee (rationale for the third condition in Definition 2.2). The
matches-before (MB) ordering comprehensively incorporates the
non-overtaking FIFO ordering guarantee over communicated actions
as defined in the MPI standard. The only case where MB ordering
is not always enforceable is when c1 is a receive from Pk (for some
k) and c2 is a wildcard receive. The conditional ordering exists only
when both c1 and c2 can match the same send from Pk [14]. We
leave the ordering between such receives unspecified.
MPI Semantics. Following [13], the semantics of an MPI program
is given by a finite state machine: ⟨Q,q0,A,−→⟩ where:
• Q ⊆ 2C × 2C is the set of states where each state q = ⟨I ,M⟩.
The set I is the set of actions that were so far issued by the
processes in the program, and M ⊆ I is the set of actions
that were matched so far.
• q0 = ⟨∅, ∅⟩ is the starting state.
• A ⊆ 2C is the set of actions.
• −→⊆ Q ×A → Q is the transition function of the form q

α
−→

q′, which comprises of mainly of two type of transitions:(i)
issue and match transitions. The concrete semantics and the
resulting state change for issue and match transitions are as
follows.

q = ⟨I ,M⟩
α ⊆ {c |∀c1 ∈ C, (c1 < c → c1 ∈ I)
∧(c1 ≺ c ∧ isBlocking(c1) → c1 ∈ M)}

Issue

q′ = ⟨I ∪ α ,M⟩,q
α
−→ q′

The issue transition issues a new action c ∈ α only if all preced-
ing nonblocking actions from the c’s process are already issued
and all preceding blocking actions (known through the predicate
isBlocking) from the c’s process are already matched.

q = ⟨I ,M⟩ α ⊆ Matchable(q)
Match

q′ = ⟨I ,M ∪ α⟩,q
α
−→ q′

The match transition matches the set of actions that are match-
able at q. The following definitions describe which set of actions
are indeed matchable at a state.

Definition 2.3 (Ready Actions). A set actions R(q) ⊆ I \M is ready
at q = ⟨I ,M⟩ if for every c ∈ R(q) and for every a ≺ c , we have that
a ∈ M .

Definition 2.4 (Matchable Actions). A set of action-sets is match-
able at a state q, denoted by Matchable(q), is defined as follows:

https://github.com/rishabh-ranjan/simian

Exploiting Epochs and Symmetries in Analysing MPI Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

P0 P1 P2
S0,0(1) R1,0(∗) S2,0(1)
B0,1(0) R1,1(∗) B2,1(0)
S0,2(1) W1,2(h1,1)

B1,3(0)
R1,4(∗)

Figure 1: Example Message Passing Program

• ∀i, j ∈ N, if c1 = Si,−(j), c2 = Rj,−(i/∗) and c1, c2 ∈ R(q) then
{c1, c2} ∈ Matchable(q) (Note: − at a position represents that
the position is not relevant to the discussion)
• if c1 =Wi,−(−) ∈ R(q), then {c1} ∈ Matchable(q)
• if ∀i ∈ {1, . . . ,N },∃d .Bi,−(d) ∈ R(q), then {Bi,−(d)} ∈
Matchable(q)

LetM =
⋃
q∈Q Matchable(q) be the set of all potential matches.

It was shown in [14] that precise computation ofM is NP-complete
for single-path programs.

Definition 2.5 (Trace). Given a run of P from its starting state
q0

α0
−−→ q1

α1
−−→ . . .

αn−1
−−−−→ qn , the trace τ corresponding to this run

is the sequence α0α1 . . . αn−1. For brevity, we may omit the labels
for the Issue transitions.

A trace is extensible if from the last state of the run corresponding
to the trace and after zero or more issue transition moves there
exists a match transition move. A trace which contains all calls in
P is called a complete trace (notice that for single-path programs,
every full run of the program can be viewed as a complete trace).
We denote the set of all traces of P as T .

Definition 2.6 (Deadlocking trace). τ ∈ T is deadlocking if τ is
not complete and is not extensible.

The set of all deadlocking traces is denoted as Td . Finally, we
describe the problem we tackle in the paper: deadlock detection for a
program P is a decision problem to determine whetherT ∩Td = ∅.

3 EXAMPLE

Consider an example program shown in Figure 1. The program
consists of three processes P0, P1 and P2. For brevity, we refer to
the actions without their arguments. The synchronization from the
matching barriers B0,1, B1,3, and B2,1 splits the communication into
two phases. Before the synchronization, P0 and P2 send a message
each to P1. The second receive from P1 is blocking – modeled with
W1,2 immediately following R1,1. The MPI runtime mandates that
both the receives match before B1,3 can even be issued. After the
synchronization, P0 sends a message to P1.

The process order for each process is given by: S0,0 < B0,1 < S0,2,
R1,0 < R1,1 < W1,2 < B1,3 < R1,4, and S2,0 < B2,1. The matches-
before order is given by B0,1 ≺ S0,2 and R1,0 ≺ R1,1 ≺ W1,2 ≺
B1,3 ≺ R1,4. Noticeably, there is no ≺ ordering between S0,0 andB0,1
or between S2,0 and B2,1. This is due to an absence of corresponding
waits intervening between the send and barrier actions.

At state q = ⟨I , ∅⟩ with I = {S0,0,R1,0, S2,0}, the ready action set
is R(q) = I . Thus,Matchable(q) = {{S0,0,R1,0}, {S2,0,R1,0}} = M.

There are two complete traces up to reordering of Issue transitions
–τ1 = ⟨{S0,0,R1,0}, {S2,0,R1,1}, {W1,2}, {B0,1,B1,3,B2,1}, {S0,2,R1,4}⟩,

Figure 2: Program Graph for Running Example

τ2 = ⟨{S0,0,R1,1}, {S2,0,R1,0}, {W1,2}, {B0,1,B1,3,B2,1}, {S0,2,R1,4}⟩
–which differ only in the matching of the first twowildcard receives
from P1. Any proper prefix of τ1 or τ2 is an incomplete but extensible
trace.

Deadlocking variant. If we replace R1,1(∗) with R1,1(0), then
τ ′ = ⟨{S0,0,R1,0}⟩ is incomplete and inextensible, hence a dead-
locking trace. In our approach, the SAT encoding would detect this
deadlock by encoding the conditions of Definition 2.6. The SAT
solver will be able to detect that at state q = ⟨I ,M⟩ where M cap-
tures τ ′ and I \M = {S2,0,R1,1}, the set R(q) is empty.

Revisiting the original non-deadlocking example program, we
recall our objective to verify the program for the presence of dead-
locks by pruning away symmetric executions. It is worthwhile to
note that the program as a whole is clearly not symmetric. How-
ever, if we only consider the communication before the synchro-
nization, then P0 and P1 play symmetric roles. This highlights the
importance of epoch decomposition in discovering local symme-
tries. Our analysis proceeds by first representing the program as
a digraph (as shown in Figure 2). In this graph, the bi-direction
dashed edges denote potential matches between sends and receive
actions. The solid directed edges capture ≺ ordering among actions.
As a next step, the program is decomposed into epochs. The anno-
tated dotted rectangular boxes denote the epochs in the example
program (refer to Figure 2). Each epoch is analyzed in isolation
for deadlocks. Our approach constructs a quotient search space
during the analysis of an epoch by pruning symmetric behaviors.
Only epoch E0, containing actions S0,0,R1,0,R1,1, S2,0, which shows
the possibility of producing symmetric behaviors. The SAT solver
is provided with constraints that stops the solver from exploring
the match combinations {S0,0,R1,1}, {S2,0,R1,0} and only explore
{S0,0,R1,0}, {S2,0,R1,1}.

4 EPOCH DECOMPOSITION

Evidently, extracting and exploiting global symmetries in a program
is not always feasible as none may exist. Keeping this in mind, we
proceed by slicing a program into epochs such that each commu-
nication action in an epoch finds a match within the same epoch.
We begin by representing the program as a digraph. The epoch
decomposition is specified on this program graph.

Definition 4.1 (Program Graph). A program graph is a graph
G = (C,E) where E is a collection of edges s.t. ∀c1, c2 ∈ C, c1 ≺ c2

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

iff (c1, c2) ∈ E and {c1, c2} ∈ M iff (c1, c2), (c2, c1) ∈ E. Additionally
all sets of matching barriers are collapsed to single nodes.

Figure 2 illustrates the program graph for the example in Figure 1.

Definition 4.2 (Communication Epoch). Given a program graph
G. Let Ge , with set of calls Ce , be a strongly connected component
(SCC) of G. This subgraph Ge is an epoch. The matches-before
relation ≺e is a restriction of ≺ toCe . The allowedmatchesMe ⊆ M
contains sets of Ce actions.

Given a graph G, SCCs can be computed in O(n +m) (n be the
number of calls andm = |M|) using standard algorithms such as
Tarjan’s [39] or Kosaraju-Sharir’s [35]. The computation of precise
epochs, as SCCs of a graph, is fundamentally dependent on the
precision of match-set M. Since the precise computation of M is
established to be an intractable problem, we provide a series of
heuristics to construct a refinement of M. We denote this refine-
ment byM+. Notice that replacingM withM+ does not affect the
correctness of deadlock detection.

4.1 Matchset Refinement

The most obvious choice forM+ is where (i) the matching barrier
actions (at the same depth) are merged into a single action set, and
(ii) all send and receive actions that are type-compatible are set as
potential matches.
Recursive matches-before order pruning. An observation for
refinement is that for an action c1 to match with c2, then under ≺
ordering all actions ancestor to c1 must find a match with actions
that are not successors of c2.

M+r ec ← {{c1, c2} ∈ M
+ : ∀c ′1 ∈ C, c ′1 ≺ c1,

∃c ′2 ∈ C, c2 ̸≺ c ′2, {c
′
1, c
′
2} ∈ M

+
r ec }

The recursive matches-before pruning heuristic has been men-
tioned in [14]; however, we note that the technique is not imple-
mented in the publicly available version of their tool, MOPPER.

P0 P1
S0,0(1) R1,0(∗)
S0,1(1) R1,1(∗)

Consider a simple example program shown above. Here,M+ =
{{S0,0,R1,0}, {S0,0,R1,1}, {S0,1,R1,0}, {S0,1,R1,0}}. Since S0,0 ≺ S0,1,
it is evident that S0,1 can not match R1,0 in any execution. Consider
c1 = S0,1 and c2 = R1,0. Then c ′1 = S0,0. We see that there does
not exist a c ′2 s.t.c2 ̸≺ c ′2 that can match c ′1. Thus, {S0,1,R1,0} is not
included inM+r ec . Similary, one can reason about the invalid match
pair {S0,0,R1,1}.
Barrier-led pruning.Note that in the program graph construction,
matching barriers at a depth were collapsed and represented by a
single barrier (see Definition 4.1). If a barrier node is responsible
for ordering a potential matching pair under ≺, then clearly they
are fit to be pruned away. The declarative definition for barrier-led
pruning is as follows:

M+anc ← M+r ec \ {{c1, c2} ∈ M
+
r ec : ∃{b} ∈ M+r ec , c1 ≺ b ≺ c2}

Consider the example in Figure 2. Notice thatR1,1 ≺ B1,3 through
the wait call,W1,2. But R1,1 is not yet ordered with its potential

match S0,2. Only because the barrier group {B0,1,B1,3,B2,1} is con-
sidered a single node, a relation R1,2 ≺ S0,2 is induced. Thereafter,
according to the Barrier-led pruning heuristic, it is determined that
R1,2 and S0,2 cannot be matched in any execution and can be safely
removed from further consideration.
Counting heuristic. If the number of sends is equal to the number
of matching receives, then match pairs involving these sends with
receives outside the above-mentioned set can be pruned away. The
counting heuristics have been found in prior works [20, 36]. Below
we give a declarative definition of this heuristic.

Let C1 ⊆ C and C2 = {c2 ∈ C : ∃c1 ∈ C1 : {c1, c2} ∈ M+}. If
|C1 | = |C2 |, then we can prune all {c, c2} from M+ for all c such
that c1 < c for all c1 ∈ C1. This process can be repeated for multiple
such C1 sets.

Consider the example in Figure 2 again. ConsiderC1 = {R1,0,R1,1}.
The unique set C2 for such a C1 is C2 = {S0,0, S2,0}. Note that
S0,2 < C2 since it was pruned away by the barrier-led pruning
heuristic. Since |C1 | = |C2 |, we find a c s.t. c1 < c,∀c1 ∈ C1. We
note that c = R1,4. This implies that we prune {S0,0,R1,4} (which
could not otherwise be pruned by the other two pruning heuristics).

4.2 Caching

Verified epochs (free from deadlocks) are cached to avoid redun-
dant verification. The program graphs representing the epochs
are hashed using BLISS [23] (a tool that checks for graph isomor-
phism) and stored in a hash table. To ascertain a match (since hashes
may not be reliable in theory), the current epoch’s and the cached
epoch’s program graphs must be tested for graph isomorphism.
This is again done using BLISS. The graph isomorphism problem is
not known to be in P or in NP-complete [32]. However, in practice,
it is easy to solve for most common cases. We find in our experi-
ments that time spent in isomorphism checks with cached epochs
is insignificant compared to the time required for new verification.

4.3 Correctness

We establish the correctness of epoch decomposition by the follow-
ing theorem.

Theorem 4.3. P has a deadlocking trace τ if and only if some
communication epoch e ∈ E has a deadlocking trace τe .

The forward proof follows the argument that pruning applied to
M+ is conservative. Thus, SCCs will contain a set of match edges
that is over-approximate and can realize parts of any trace of P . For
the backward direction, observe that since P was obtained from
dynamic execution, every epoch is reachable; so a deadlocking trace
in some epoch readily gives a deadlocking trace for P .

5 SYMMETRY IN MPI PROGRAMS

The use of symmetries in reducing the search space requires two
steps. The first step is to discover symmetries in a program. This
reduces to the graph automorphism problem, which, like graph
isomorphism, is not known to be in P or NP-complete [32]. The
second step is to make use of discovered symmetries by directing
the search procedure to examine only a representative member of
each symmetry class. In this section, we formalize the notion of

Exploiting Epochs and Symmetries in Analysing MPI Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

symmetry in the context of MPI programs and describe how to
formulate constraints that allow a SAT solver to break symmetries.

5.1 Symmetry Detection

We describe the symmetries in P by computing automorphisms
of G (the program graph), which are structure preserving vertex
permutations.

Definition 5.1 (Graph Automorphism). A bijection π : C → C is
an automorphism of G if (c1, c2) ∈ E ⇐⇒ (π (c1),π (c2)) ∈ E for
all c1, c2 ∈ C .

It is known that the set of automorphisms of a graph forms
a group under composition. We denote the group of all automor-
phisms ofG byG. We show that these automorphismswhen applied
to traces of P preserve the relation ≺ over the actions of P. As a
result, Td (the set of deadlocking traces) too remains preserved.

Let π ∈ G be an arbitrary automorphism of G. π is naturally
extended to other structures over C by replacing all occurrences
of c in the structure with π (c). In particular, for trace τ ∈ T , π (τ)
is naturally defined. In the proofs that follow, wherever applicable,
we only prove the forward implication. The backward implication
follows by considering the automorphism π−1 instead of π .

Lemma 5.2. The automorphism π preserves allowed matches, i.e.,
{c1, c2} ∈ M ⇐⇒ {π (c1),π (c2)} ∈ M .

Proof. {c1, c2} ∈ M =⇒ (c1, c2), (c2, c1) ∈ E =⇒ (π (c1),
π (c2)), (π (c2),π (c1)) ∈ E =⇒ {π (c1),π (c2)} ∈ M (by Defini-
tion 4.1) □

Lemma 5.3. The automorphism π preserves the matches-before
order ≺, i.e., c1 ≺ c2 ⇐⇒ π (c1) ≺ π (c2)

Proof. Follows from the definitions of E and π . □

Theorem 5.4. The automorphism π preserves traces, i.e., τ ∈
T ⇐⇒ π (τ) ∈ T .

Proof. Assuming τ ∈ T , we show that π (τ) has elements only
from M only, each call c ∈ C occurs at most once in it, and that
causality, as specified by ≺, is preserved. Since τ contains only ele-
ments fromM, we have that for each {c1, c2} ∈ τ . From Lemma 5.2,
we have {π (c1),π (c2)} ∈ M. If c ∈ C occurs more than once in π (τ),
then π−1(c) occurs more than once in τ , which is a contradiction.
Finally, suppose there exists c2 in π (τ) and ∃c1 ∈ C, c1 ≺ c2 s.t.
c1 does not occur earlier in π (τ) than c2. Then π−1(c2) exists in τ
with π−1(c1) ≺ π−1(c2) such that π−1(c1) does not occur earlier
in τ than π−1(c2) (by Lemma 5.3). This is a contradiction since
τ ∈ T . □

Theorem 5.5. The automorphism π preserves deadlocks, i.e., τ ∈
Td ⇐⇒ π (τ) ∈ Td .

Proof. Assume τ ∈ Td . Let R ⊆ C be the set of calls which do
not occur in τ . π (R) is obtained from R by replacing occurrences
of c with π (c). Note that π (R) ⊆ C is the set of calls which do not
occur in π (τ). Since, R , ϕ, it implies π (R) , ϕ. This proves that
π (τ) is not complete.

Let {c1, c2} be an arbitrary element inM such that c1, c2 ∈ π (R).
Then {π−1(c1),π−1(c2)} ∈ M (by Lemma 5.2) and π−1(c1),π−1(c2)

∈ R. Since τ ∈ Td , there exists c ∈ R such that c ≺ π−1(c1) or c ≺
π−1(c2). Then for π (c) ∈ π (R), we have π (c) ≺ c1 or π (c) ≺ c2 (by
Lemma 5.3). This proves that π (τ) is inextensible; thus, completes
the proof for π (τ) ∈ Td . □

We now show that automorphisms, as discussed above, facilitate
the pruning of the search space while preserving the correctness
of deadlock detection in an MPI program.

Definition 5.6 (Trace Equivalence ≡). For τ1,τ2 ∈ T , the group of
automorphisms leads to an equivalence relation ≡⊆ T × T , such
that τ1 ≡ τ2 if there exists π ∈ G and τ2 = π (τ1).

The equivalence relation ≡ partitions the set of traces T into
equivalence classes called orbits. The following theorem establishes
that any reduction in the search space by way of realizing ≡ and
exploring only the representative traces from each orbit will not
affect the correctness of deadlock detection.

Theorem 5.7. For τ1,τ2 ∈ T , τ1 ≡ τ2 =⇒ (τ1 ∈ T ⇐⇒ τ2 ∈ T)
∧(τ1 ∈ Td ⇐⇒ τ2 ∈ Td).

Proof. Follows from Theorems 5.4 and 5.5, and Definition 5.6.
□

Example. We revisit the example shown in Figure 1. Let us consider
epoch E0. Consider the trace for E0, τ : ⟨{S0,0,R1,0}, {S2,0,R1,1}⟩.
For brevity, we have suppressed showing the arguments of actions
in the trace. Consider π : E → E, given as:S0,0 7→ S2,0, S2,0 7→ S0,0,
R1,0 7→ R1,0, and R1,1 7→ R1,1.

Under this automorphism, we obtain a trace: π (τ) : ⟨{S2,0,R1,0},
{S0,0,R1,1}⟩. Note that τ ≡ π (τ) and examination of π (τ) can be
avoided.
Computing Automorphisms for MPI Programs. We use BLISS
which is particularly efficient for sparse graphs. BLISS characterizes
the automorphism by producing an irredundant set of group gener-
ators (elements of a group that can generate all the elements of a
group). In a graph with n vertices, the automorphism group can be
specified by no more than n − 1 generators and BLISS satisfies this
bound.

BLISS also allows setting a time-out and only the generators found
till then will be used to encode symmetry breaking constraints
(step 2). We found this especially convenient for our formulation,
although we did not find graph automorphism to be the bottleneck
in our experiments – we ran BLISS without setting time limits.

5.2 Symmetry Breaking Predicates

We encode the symmetries, as discovered in the previous step
through BLISS, via a collection of SBPs. Each SBP is chosen in
such a way that for each π ∈ G they are satisfied for exactly one
trace in the equivalence class induced by π .
Symmetry Constraint ϕs . We introduce a lexicographic ordering
on the traces in T . We then design a predicate that is true of only
the smallest trace under this ordering within each equivalence class.
More formally, we introduce a constraint ϕs , which is satisfied by
one (or few) representative traces for each orbit. Before presenting
the shape of ϕs , we briefly revisit the SAT encoding for deadlocks
proposed in [13]; the proposed SBPs augment this encoding with
ϕs .

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

Definition 5.8 (Propositional encoding for symmetry-aware dead-
lock verification). For a trace τ ∈ T , ϕ(τ) = ϕt ∧ ϕd ∧ ϕs , where:

(1) ϕt : satisfied by all valid traces arising from feasible match-
ings of actions witnessed in τ underM

(2) ϕs : satisfied by one (or few) representative traces for each
orbit of symmetric traces

(3) ϕd : satisfied by deadlocking traces

The encoding contains Boolean variables ma and ra for each
action a ∈ C denoting whether the action is matched or is ready
to be matched, respectively. Boolean variables tab and sab denote
that a ≺ b and a matches with b, respectively. The encoding also
uses a bit-vector to capture the logical time at which each action a
happens. Thus, if tab is true then clka < clkb .

Since,M computation is NP-complete, the encoding works with
an over-approximation M+, which contains all type-compatible
actions. For instance,M+ contains all those matching Si,−(j) and
Rj,−(i/∗) which do not violate ≺. Note that this may still include
infeasible send-receive match pairs.

Thus, ϕt is captured by the following constraints:∧
b ∈C

∧
a≺b

tab (1)∧
a,b ∈C

(
tab → (clka < clkb)

)
(2)

Constraints (1) and (2) encode the relation ≺ for each a,b ∈ C .∧
{a,b }∈M+

(
sab →

∧
c ∈M+(a),c,b

¬sac ∧
∧

c ∈M+(b),c,a

¬scb
)

(3)∧
(a,b)∈M+

(
sab → (clka = clkb)

)
(4)

Constraints (3) and (4) encode a unique match for each send and
receive in C along with the constraint on their occurrence time.∧

a∈C

(
ma →

∨
b ∈M+(a)

sba ∧
∨

b ∈M+(a)

sab
)

(5)∧
α ∈M+

(
sα →

∧
a∈α

ma
)

(6)

Constraints (5) and (6) capture that each matched send (resp. re-
ceive) should appear in some match inM+. Also, every constituent
action a in each match α have the status of having found a match.∧

a∈C

(
ma → ra

)
(7)∧

b ∈C

(
rb ↔

∧
a≺b

ma
)

(8)

Constraints (7) and (8) encode that for an action a to be matched
it is necessary for it to be ready first. An action b is ready if all
ancestors under ≺ of b are already matched.

The deadlocking constraint,ϕd , encodes a state fromwhere trace
is inextensible and not all actions have matched:∧

α ∈M+

(∨
a∈α
(ma ∨ ¬ra)

)
(9)∨

a∈C
¬ma (10)

Finally, to specify ϕs for a trace τ , we introduce a bit-vector of
Boolean variables sα for each α ∈ τ . We denote such a bit-vectors
by [τ]. In order to establish total ordering on traces, we resort
to defining a lexicographic ordering constraint on the bit-vectors.
This ordering is also known in SBP literature as Lex-Leader con-
straints [6]. Given bit-vectors for traces [τ1] = [sα1 , sα2 , . . . , sαn]
and [τ2] = [sβ1 , sβ2 , . . . , sβn]. We define a predicate Pi (V ,W), 0 ≤
i ≤ n as:

Vi−1 =Wi−1 → sαi ≤ sβi

whereVi−1 = [sα1 , . . . , sαi−1] andWi−1 = [sβ1 , sβ2 , . . . , sβi−1]. Build-
ing on the above predicate, we define the lexicographic constraint
[τ1] ≤ [τ2] by the following encoding:∧

Pi ([τ1], [τ2])

The intuition behind the above encoding is that given an assignment
for [τ1] and [τ2] as binary numbers, [τ1] ≤ [τ2] only when the
respective binary numbers also hold the inequality. The above
encoding is not efficient. We chose AND-CSE, which we found most
promising with respect to performance and formula size among
the nine encodings surveyed and evaluated in [48], to encode the
above Lex-Leader constraints.

Moving forward, we obtain a set B ⊆ G of automorphisms from
BLISS. For each π ∈ B, we apply the Lex-Leader constraint on τ and
π (τ). The constraint obtained is:

ϕs
∧
π ∈B
[τ] ≤ [π (τ)] (11)

Theorem 5.9. The Lex-Leader ordering constraints forG are sound
and complete for symmetry breaking.

Proof. We prove soundness and completeness of symmetry
breaking separately: Consider an orbit Q . Let τ be the minimal
trace in Q by ≤. Then τ satisfies τ ≤ π (τ),π ∈ G for any π ∈ Q .
Hence, τ is present in the constrained search space, which proves
soundness.

Consider an orbit Q and any trace τ ∈ Q which is also in the
constrained search space. Let τ ′ be an arbitrary trace in Q . Then
there exists π ∈ G such that τ ′ = π (τ). The ordering constraint
τ ≤ π (τ) implies that τ ≤ τ ′. Hence, τ must be the unique minimal
trace in Q . This proves completeness. □

5.3 Complexity Analysis

The size of SAT formula (excluding the ϕs constraints) for a trace
with n actions is shown to have O(n3) and O(n2) clauses and vari-
ables, respectively [13]. With ϕs , the Lex-Leader constraints for
all π ∈ G risk become exponential in number. Instead, we use the
Corollary to Theorem 5.9 and choose B to be the set of generators
of the automorphism group G. It has been shown in [1] that us-
ing group generators for exploiting symmetry directly from SAT
formulas is sufficient. Thus, working with at most д generators
(where д < n), the number of automorphisms to consider in ϕs is
in O(n). AND-CSE introduces O(n2) many new variables resulting
in a formula that is linear in the size of the trace (i.e., O(n2)). Com-
bining this with the number of automorphisms, we observe that
the asymptotic complexity of the encoding remains unchanged, i.e.,
O(n3).

Exploiting Epochs and Symmetries in Analysing MPI Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

6 RESULTS

In this section, we present our experimental setup and results to
validate the efficacy of our proposed method.

6.1 Implementation

We implement the presented technique in a tool called SIMIAN.
SIMIAN can verify MPI programs written in C/C++ for deadlocks.
As a pre-processing step, the source code is compiled using ISP [42]’s
compiler to produce a binary suitable for ISP’s execution engine.
SIMIAN itself has the following 3 components:

Scheduler. The compiled binary is run on a particular set of
inputs / arguments with the specified number of processes and
buffering semantics (0- or∞-) by ISP’s execution engine (also called
scheduler). If the dynamic run terminates successfully, the scheduler
outputs the set of MPI actions C recorded during the execution,
along with the process order <, the matches-before order ≺, and
the initial over-approximate matchsetM+ onC . On the other hand,
if the dynamic run deadlocks, the scheduler detects this and SIMIAN
terminates. This component is common to HERMES, MOPPER and
MOPPER-Opt.

Analyzer. The analyzer implements the core logic for epoch
decomposition and symmetry-breaking. It performs matchset re-
finements, constructs the program graph and identifies epochs.
For each epoch to be verified, it invokes BLISS to detect symmetry,
and generates the SAT formula. Further, it implements the caching
mechanism described in Section 4.2. The analyzer runs statically
since the output of the scheduler is sufficient for all the analysis
required.

Solver. SIMIAN calls the Z3 SMT solver [7] using its C++ API
to solve the generated SAT formulas. If a formula is satisfiable, a
deadlocking trace is implied, and SIMIAN terminates. Otherwise,
the analyzer proceeds to the next epoch, if available, performing
symmetry detection and formula generation as usual.

6.2 Baselines

We compare SIMIAN with MOPPER [14], MOPPER-Opt [13], and
HERMES [27]. MOPPER and MOPPER-Opt are trace verifiers with the
same core codebase. MOPPER-Opt differs from MOPPER as it works
on an abstraction that interprets an unbroken sequence of wildcard
receive actions as a single receive action. SIMIAN is designedwithout
these abstractions, but can be augmented with such abstractions.

HERMES is a tool that uses a modified encoding to analyse both
single-path and multi-path programs. Additionally, it departs from
a propositional SAT encodings (used in MOPPER and MOPPER-Opt)
to a SMT formulation.

A recent tool presented in [20] also detects communication dead-
locks by first predicting a set of candidate deadlocking traces, and
then pruning the infeasible candidates through a SMT formulation.
Unfortunately, we could not empirically evaluate our work againt
this tool as it did not accompany preprocessing, compilation and
running scripts for benchmarks. We did not receive a response to
our follow-up request on this matter to the authors of [20]. Note,
however, that the contributions of SIMIAN are orthogonal and com-
plementary to the contributions in [20].

We do not compare against full symbolic verifiers like MPI-
SV [47], as such a comparison would be inequitable. While trace

verifiers assume access to a dynamic execution of the program, al-
lowing them to work with very succinct models, symbolic verifiers
must perform all the analysis statically. Further, a trace verifier
only verifies the program for the given input, whereas symbolic
verifiers seek to provide guarantees for large symbolic input spaces.
The choice of verifier depends on the runtime vs guarantee require-
ments, and as such, these techniques are not direct competitors.

6.3 Benchmark Summary

Here we briefly describe the benchmarks used in our experiments.
Adder [38]. It is a benchmark that adds an array of numbers in
parallel using master-worker communication pattern. It is obtained
from the FEVS suite.
Floyd [46]. It implements the all-pairs shortest path Floyd-Warshall
algorithm with a pipelined communication pattern where each pro-
cess communicates with the adjacent processes in the ranking.
GaussElim [46]. It is a parallel implementation of the Gauss-
Jordan Elimination to obtain the row-echelon form of a matrix,
using pairwise communication between processes.
Heat and Heat Errors [34]. The two benchmarks implement the
heat conduction equation on a 2D grid. The latter benchmark is
seeded with communication bug.
Integrate [38]. It is an implementation of computing an numerical
integration of an input function using the trapezoid rule.
Diffusion [38]. It implements an iterative algebraic solver for 2D
difussion equation on a mesh of shape N ×M with t time steps. It
is a particularly interesting benchmarks with many epochs.
MatMul [38]. It is an implementation of matrix multiplication
of N × L and L ×M matrices. Communication pattern is a block-
distribution over rows.

6.4 Variations

Most prior works show only the variation in benchmarks with
the number of processes or the buffering mode while fixing the
values for the grid/matrix shapes/sizes and a single timestep. We
demonstrate the scalability of our methods to the verification of
programs over different parameters, as it shows the robustness and
applicability of epochs and symmetry-analysis to different variants.
We consider the following variations over Diffusion andMatMul:

(1) Diffusion with fixed timestep (t=1), but varying processes (p)
and grid size N ×M with N ×M = p. For every p, we consider
all factorizations N × M and report the average runtimes.
We find that our techniques are applicable to different grid
shapes, thus allaying the fear that symmetry might be a rare
occurrence and highly sensitive to the configurations under
which the program is run.

(2) Diffusion on a 2x2 grid, with timesteps varying. Here, we
show that the epoch identification is strong enough to de-
tect the redundancy in the communication patterns seen in
different timesteps. While SIMIAN can use its cache of ver-
ified epochs to achieve constant solver time with timestep
variations, other tools end up solving ever-larger formulas
for the growing traces due to larger number of timesteps.

(3) MatMul on fixed size matrices (N=L=M=8) with varying
number of processes.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

Table 1: Runtimes for∞-buffering (in s)

Name vs X X Deadlock Mopper Mopper-Opt Hermes Simian

Adder 8 No 0.268 0.042 0.212 0.061
vs 16 No TO 0.212 TO 1.157
Processes 32 No TO 1.497 TO 1.912

64 No TO 4.116 TO 7.257

Floyd 8 No 2.761 6.132 1.453 0.628

vs 16 No 283.524 399.156 2.148 1.939

Processes 32 No TO TO 5.021 2.491

64 No TO TO 10.312 6.081

GaussElim 8 No 0.243 0.233 0.187 0.186

vs 16 No 0.628 1.655 0.258 0.283

Processes 32 No 4.314 4.282 1.993 2.334

64 No 10.033 6.159 3.912 3.226

Heat 8 No 0.666 0.395 0.406 0.325

vs 16 No 1.581 0.845 0.636 1.506
Processes 32 No 6.543 1.623 2.005 4.255

64 No 14.927 10.597 4.464 3.232

HeatErrors 8 Yes 0.523 0.395 0.309 0.353
vs 16 Yes 1.191 0.779 0.662 0.565

Processes 32 Yes 5.706 2.574 2.712 2.191

64 Yes 10.392 4.799 6.435 5.051

Integrate 8 No 0.256 0.038 0.209 0.062
vs 16 No TO 0.232 TO 0.131

Processes 32 No TO 3.581 TO 1.854

64 No TO 4.212 TO 7.583

Diffusion 4 No TO 3.729 239.77 0.122

(Timesteps=1) 8 No TO 14.854 TO 0.716

vs 16 No TO 49.069 TO 8.566

Processes 24 No TO 271.247 TO 36.308

Diffusion 2 No TO 1.598 TO 0.225

(Grid=2x2) 4 No TO 26.347 TO 1.023

vs 8 No TO 842.951 TO 7.197
Timesteps 16 No TO TO TO 67.854

MatMul 8 No 2.719 0.083 1.815 0.076

(N=L=M=8) 16 No 3.572 0.274 3.032 0.114

vs 32 No 4.448 0.734 4.014 1.477
Processes 64 No 8.625 4.001 5.482 2.766

MatMul 8 No 2.708 0.086 1.918 0.076

(N=L=M=p) 16 No TO 0.328 TO 0.224

vs 32 No TO 3.728 TO 2.822

Processes 64 No TO 4.808 TO 16.175

MatMul 4 No 0.061 0.062 0.071 0.065
(p=8) 6 No 0.101 0.066 0.112 0.079
vs 8 No 2.704 0.092 1.794 0.076

Size (N=L=M) 12 No TO 9.772 TO 4.938

(4) MatMul with processes and matrix size varying with the
number of processes (N=L=M=p).

(5) MatMul with fixed number of processes, but varying matrix
size (but with N=L=M).

Finally, we run all benchmarks under both∞- and 0-buffering
settings. For our purposes, the buffering mode only affects the
matches-before order. In particular, under∞-buffering the matches-
before ordering between sends and their corresponding waits are
relaxed. See [14] for further details.

6.5 Runtime

Tables 1 and 2 show the total times for the various tools. In each
row the smallest runtime is shown in bold. We keep a timeout of 20
minutes (denoted by TO). The experiments were run on a machine
with 16 “Intel(R) Xeon(R) W-1270 CPU @ 3.40GHz” cores.
∞-buffering: SIMIAN easily dominates Mopper and Hermes

in all benchmarks. This clearly demonstrates the gains offered
by epochs and symmetry. The comparison with MOPPER-Opt is
more interesting. MOPPER-Opt proposes an alternative encoding

Table 2: Runtimes for 0-buffering (in s)

Name vs X X Deadlock Mopper Mopper-Opt Hermes Simian

Adder 8 No 0.281 0.043 0.285 0.061
vs 16 No TO 1.249 TO 1.301
Processes 32 No TO 1.684 TO 0.932

64 No TO 4.112 TO 7.065

Floyd 8 No 3.986 3.715 0.232 0.249
vs 16 No 7.171 22.413 1.582 2.108
Processes 32 No 112.793 157.188 4.665 5.619

64 No 763.232 TO 10.941 32.261

GaussElim 8 No 0.223 0.235 0.177 0.185
vs 16 No 0.599 0.618 0.773 0.481

Processes 32 No 4.398 1.297 4.097 4.155
64 No 5.748 6.085 5.612 5.429

Heat 8 No 0.323 0.325 0.241 0.225

vs 16 No 0.726 0.789 1.646 1.549
Processes 32 No 4.515 2.497 4.119 1.831

64 No 4.139 3.706 5.341 9.121

HeatErrors 8 Yes 0.408 0.323 0.221 0.229
vs 16 Yes 1.226 1.772 0.587 0.461

Processes 32 Yes 4.351 2.515 4.568 1.987

64 Yes 9.492 6.634 6.548 2.932

Integrate 8 No 0.281 0.042 0.251 0.079
vs 16 No TO 0.223 TO 0.279
Processes 32 No TO 3.592 TO 3.961

64 No TO 4.237 TO 9.119

Diffusion 4 Yes 0.029 0.032 0.115 0.137
(Timesteps=1) 8 Yes 0.037 0.035 0.132 0.125
vs 16 Yes 0.229 0.197 0.295 0.337
Processes 24 Yes 1.457 1.434 0.548 1.482

Diffusion 2 Yes 0.028 0.034 0.131 0.127
(Grid=2x2) 4 Yes 0.031 0.028 0.132 0.127
vs 8 Yes 0.029 0.035 0.121 0.112
Timesteps 16 Yes 0.032 0.038 0.124 0.139

MatMul 8 Yes 0.129 0.069 0.087 0.157
(N=L=M=8) 16 No 4.088 1.269 1.339 0.242

vs 32 No 5.097 1.488 3.714 3.582
Processes 64 No 7.544 4.065 3.835 4.209

MatMul 8 Yes 0.134 0.073 0.087 0.157
(N=L=M=p) 16 Yes 0.869 0.281 0.714 0.356
vs 32 Yes 4.649 0.633 9.545 1.169
Processes 64 Yes 24.643 4.586 98.515 9.554

MatMul 4 No 0.059 0.046 0.068 0.075
(p=8) 6 No 0.092 0.048 0.104 0.067
vs 8 Yes 0.127 0.071 0.098 0.157
Size (N=L=M) 12 Yes 0.189 0.099 0.121 0.187

optimized for sequences of wildcard receives, which is one source of
local symmetry inMPI programs. This allowsMOPPER-Opt to match
the performance of SIMIAN in some cases. However, we observe
that MOPPER-Opt fails to scale as well as SIMIAN in benchmarks
with richer communication structures, such as Floyd and variants
of Diffusion and MatMul. Even in relatively simpler benchmarks,
we find that SIMIAN is highly competitive with MOPPER-Opt, often
outperforming it despite the overheads due to epoch decomposition
and symmetry detection.

0-buffering: In general, we observe that verification under 0-
buffering is relatively faster than under∞-buffering. Nevertheless,
SIMIAN maintains its competitiveness vis-à-vis other baselines. In-
terestingly, many of these benchmarks deadlock under 0-buffering.
Often such deadlocks are encountered during the first run of the
program, which removes the need for further analysis.

6.6 Communication Structure

In Table 3, we explore the communication structure of the consid-
ered benchmarks in terms of epochs and symmetry. In the interest

Exploiting Epochs and Symmetries in Analysing MPI Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 3: Communication Structure Summaries

Name vs X X Trace Size Epochs Symmetry

(Size, Symmetry, Repeats) ... Total Unique Repeated Total

Adder 8 28 (14,6,1) (2,1,7) 8 2 6 7
vs 16 60 (30,14,1) (2,1,15) 16 2 14 15
Processes 32 124 (62,30,1) (2,1,31) 32 2 30 31

64 252 (126,62,1) (2,1,63) 64 2 62 63

Floyd 8 176 (20,6,1) (147,0,1) (1,0,9) 11 3 8 6
vs 16 368 (20,6,1) (23,7,8) (147,0,1) (1,0,17) 27 4 23 13
Processes 32 752 (20,6,1) (23,7,24) (147,0,1) (1,0,33) 59 4 55 13

64 1520 (20,6,1) (23,7,56) (147,0,1) (1,0,65) 123 4 119 13

GaussElim 8 84 (4,1,6) (2,1,2) (1,0,14) 22 3 19 2
vs 16 172 (4,1,14) (2,1,2) (1,0,22) 38 3 35 2
Processes 32 348 (4,1,30) (2,1,2) (1,0,38) 70 3 67 2

64 700 (4,1,62) (2,1,2) (1,0,70) 134 3 131 2

Heat 8 144 (2,1,60) (1,0,24) 84 2 82 1
vs 16 296 (2,1,124) (1,0,48) 172 2 170 1
Processes 32 600 (2,1,252) (1,0,96) 348 2 346 1

64 1208 (2,1,508) (1,0,192) 700 2 698 1

HeatErrors 8 144 (17,0,1) (2,1,31) (1,0,15) 47 3 44 1
vs 16 296 (33,0,1) (2,1,63) (1,0,31) 95 3 92 1
Processes 32 600 (65,0,1) (2,1,127) (1,0,63) 191 3 188 1

64 1208 (129,0,1) (2,1,255) (1,0,127) 383 3 380 1

Integrate 8 28 (14,6,1) (2,1,7) 8 2 6 7
vs 16 60 (30,14,1) (2,1,15) 16 2 14 15
Processes 32 124 (62,30,1) (2,1,31) 32 2 30 31

64 252 (126,62,1) (2,1,63) 64 2 62 63

Diffusion 4 88 (2,1,16) (18,8,2) (1,0,5) 23 3 20 9
(Timesteps=1) 8 188 (2,1,32) (42,20,2) (1,0,5) 39 3 36 21
vs 16 388 (90,44,1) (2,1,64) (90,44,1) (1,0,5) 71 4 67 89
Processes 24 588 (138,68,1) (2,1,96) (138,68,1) (1,0,5) 103 4 99 137

Diffusion 2 150 (2,1,32) (18,8,3) (1,0,8) 43 3 40 9
(Grid=2x2) 4 274 (2,1,64) (18,8,5) (1,0,14) 83 3 80 9
vs 8 522 (2,1,128) (18,8,9) (1,0,26) 163 3 160 9
Timesteps 16 1018 (2,1,256) (18,8,17) (1,0,50) 323 3 320 9

MatMul 8 54 (46,5,1) (1,0,8) 9 2 7 5
(N=L=M=8) 16 78 (2,1,7) (48,7,1) (1,0,16) 24 3 21 8
vs 32 126 (2,1,23) (48,7,1) (1,0,32) 56 3 53 8
Processes 64 222 (2,1,55) (48,7,1) (1,0,64) 120 3 117 8

MatMul 8 54 (46,5,1) (1,0,8) 9 2 7 5
(N=L=M=p) 16 110 (94,13,1) (1,0,16) 17 2 15 13
vs 32 222 (190,29,1) (1,0,32) 33 2 31 29
Processes 64 446 (382,61,1) (1,0,64) 65 2 63 61

MatMul 4 38 (2,1,3) (24,3,1) (1,0,8) 12 3 9 4
(p=8) 6 46 (2,1,1) (36,5,1) (1,0,8) 10 3 7 6
vs 8 54 (46,5,1) (1,0,8) 9 2 7 5
Size (N=L=M) 12 70 (62,5,1) (1,0,8) 9 2 7 5

of space, we only report for the ∞-buffering mode. The observa-
tions in the 0-buffering mode are not particularly interesting or
instructive over and above these. We report symmetry as the num-
ber of non-identity generators returned by BLISS. The richness of
the epoch decomposition and symmetry extraction, as evident from
the table, validates the effectiveness of our characterizations, while
also substantiating our claim that real-world MPI programs tend to
have highly repetitive and symmetric communication structures.

It is interesting to note that different benchmarks scale in differ-
ent ways. In Adder, Integrate, Diffusion, and MatMul (N=L=M=p)
the symmetry scales with the size of the trace. In the other bench-
marks, the scaling is primarily in the number of epoch repetitions. In
Heat benchmark, epochs are only of sizes one and two (mainly aris-
ing from send-receive pairs and waits/barriers, respectively). This
shows that for some benchmarks the matchset pruning heuristics
are strong enough to give a deterministic set of potential matches.
In Diffusion (Grid=2x2) and MatMul (N=L=M=8), we observe that

Table 4: Component-wise Times (in s)

Name vs X X Time

Scheduler Analyzer Solver

Adder 8 0.031 0.014 0.013
vs 16 1.084 0.035 0.036
Processes 32 1.381 0.206 0.238

64 2.358 1.957 2.938

Floyd 8 0.042 0.042 0.543

vs 16 1.290 0.094 0.553
Processes 32 1.708 0.239 0.541

64 4.764 0.753 0.558

GaussElim 8 0.151 0.022 0.014
vs 16 0.223 0.032 0.014
Processes 32 2.273 0.028 0.011

64 3.165 0.045 0.011

Heat 8 0.264 0.050 0.009
vs 16 1.468 0.031 0.006
Processes 32 4.195 0.052 0.008

64 3.119 0.099 0.007

HeatErrors 8 0.353 0 0
vs 16 0.565 0 0
Processes 32 2.408 0.073 0.016

64 3.407 0.183 0.019

Integrate 8 0.032 0.015 0.013
vs 16 0.058 0.035 0.037
Processes 32 1.372 0.198 0.235

64 2.682 1.972 2.925

Diffusion 4 0.039 0.061 0.022
(Timesteps=1) 8 0.038 0.585 0.091
vs 16 0.135 6.635 1.783
Processes 24 1.021 27.953 7.294

Diffusion 2 0.022 0.185 0.021
(Grid=2x2) 4 0.027 0.968 0.021
vs 8 0.106 6.952 0.021
Timesteps 16 0.982 65.333 0.021

MatMul 8 0.032 0.018 0.026
(N=L=M=8) 16 0.065 0.024 0.023
vs 32 1.389 0.026 0.024
Processes 64 2.618 0.032 0.022

MatMul 8 0.032 0.017 0.026
(N=L=M=p) 16 0.066 0.043 0.112

vs 32 1.699 0.232 0.834
Processes 64 2.331 2.109 11.731

MatMul 4 0.032 0.017 0.015
(p=8) 6 0.031 0.018 0.021
vs 8 0.032 0.017 0.026
Size (N=L=M) 12 0.034 0.028 4.875

the same epoch appears across different runs which suggests that
maintaining a global cache of epochs across runs can help.

6.7 Component-wise Times

To better understand the practical working of our tool, in this
section we compare the times spent in its various parts. Table
4 shows the time taken by the various components of SIMIAN,
namely scheduler (dynamic execution), analyzer (epoch separation
+ symmetry detection + encoding), and solver (SMT solving). Similar
to the previous section, we only show the component times for the
∞-buffering mode. We show the bottleneck times in bold.

In HeatErrors, for 8 and 16 processes, the scheduler itself detected
a deadlock during dynamic execution, hence time spent in analyzer
and solver is 0.

In general, the time taken by the scheduler to generate a program
run is the one that takes most of the time across all benchmarks
(with an exception of Diffusion). The solver times are negligible.
Due to large trace sizes in Diffusion, the time spent in the analyzer is

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

significant. However, its impact can be seen in solving time, which
is in comparison much less.

6.8 Representative Plots

Figures 3 and 4 show plots to visualize the trends for some repre-
sentative benchmarks, namely Integrate, Diffusion (Timesteps=1)
and MatMul (N=L=M=p). This allows us to show fine-grained in-
formation with data points from all the intermediate processes.

In Integrate and MatMul, we observe that Mopper and Her-
mes verification times scale exponentially and quickly become
intractable, while SIMIAN and Mopper-Opt verification times scale
much better. In Diffusion, we see that the verification time for
Simian scales smoothly whereas Mopper-Opt verification times
have high variance. This is because at different number of pro-
cesses, the grid shapes are different (depending on the factorizations
possible for a given number of processes). This leads to different
communication structures, of which some are more and some are
less amenable to the Mopper-Opt optimization (sequence of consec-
utive wildcard receives). On the other hand, SIMIAN uses a generic
formulation of epochs and symmetry and is comparatively insensi-
tive to grid shapes.

Figure 4 contains stacked area plots to visualise the various com-
ponent times across all the processes. The variance is due to the
scheduler, which is inherently non-deterministic. In Diffusion the
variance is smoothed out due to averaging over different factoriza-
tions of the number of processes, corresponding to different grid
shapes.

7 RELATEDWORK

Analyses of message passing programs have been studied exten-
sively in the past. We provide a brief review of prior work in this
landscape.
Trace-based symbolic verifiers encode an execution of a pro-
gram and reason over the alternate matching of actions different
from the ones witnessed in the encoded execution. This is usually
accomplished by SAT/SMT encoding of the semantics as described
in Section 5.2. In [19] a trace verifier for MCAPI [16] programs,
and in [13, 18, 20] trace verifiers for MPI programs were proposed.
Of particular interest is the work in [20], in which a set of poten-
tially deadlocking traces is computed from the actions observed
in the witnessed execution. The approach prunes infeasible dead-
locking traces by encoding the MPI runtime semantics through an
SMT encoding. Our contributions of using symmetries and epochs
are complementary and orthogonal to the contributions made in
this work. Other trace verifiers (including MOPPER, MOPPER-Opt,
and HERMES) generate a single SAT formula for the entire trace
and invoke the solver on it. This does not scale well with larger
programs, or larger number of processes.

Sherlock [12] is a trace verifier that detects deadlocks in concur-
rent Java programs. Sherlock is similar to the work in [20], however,
its specification of a deadlock is unsound. In recent work [24], a
sound tool to predict deadlocks in Java programs was proposed.
REVELIO [26] is a tool that combines sequential tests to gener-
ate a concurrent test driver to detect wait-notify communication
deadlocks in multi-threaded Java libraries. The encoding used to

generate tests is similar to encodings seen in prior trace verification
works for MPI programs.
Static analyzers. ParTypes [31] is a type-based analyzer for MPI
programs. Given the protocol specification of a program, it verifies
the program using session-types. The tool can avoid the state-space
explosion problem and scale to much larger MPI programs through
its type-based analysis. However, the technique is limited to loop-
free and deterministic programs. MPI-Checker [10] is another static
analyzer, based on Clang-LLVM, to detect errors in MPI programs.
However, its ability to detect communication deadlocks is limited
to only certain scenarios. In particular, the nondeterminism in
communication is not handled in MPI-Checker.
Model checkers. ISP [42], DAMPI [44], MPI-SPIN [37], and AIS-
LINN [4] are explicit-state model checkers that verify MPI programs
on a fixed input for reachability properties such as deadlocks and
user-defined assertions. They re-run the program under analysis
to explore different executions and are found to be slow in com-
parison to trace-based symbolic verifiers [20]. HERMES is a model
checker which is built on trace verification technique of MOPPER.
It has support for multi-path programs, however, is limited to de-
tecting only deadlocks. CIVL [49] is a symbolic model checker for
various concurrent programs, such as OpenMP, Pthreads, CUDA,
and MPI. CIVL is outperformed by trace verification tools such as
MOPPER [14]. MPI-SV [47] is a recent symbolic model checker that
extracts path-level symbolic models and verify them individually.
While it is shown to be more performant that CIVL, it is ultimately
a full bounded symbolic verifier and will face known issues in
addressing large symbolic inputs.
Debuggers. There are numerous debuggers forMPI programs, such
as UMPIRE [43],MARMOT [28],MUST [15], which monitor deadlocks
and other memory-based errors in the program run. While scalable
for single program run, these approaches are neither sound nor
complete.
Symmetry in model checking. Expoiting structural symmetries
in model checking is a well-studied area [5, 11, 21]. A reasonably
recent survey [45] notes the fundamental and applied aspects of
symmetry in automated formal verification. Popular explicit state
model checkers such as MURφ [22], SPIN [17] and TOPSPIN [9]
support symmetry reduction.
Symmetry in SAT-solving.Message passing programs are not the
only domain where the resulting SAT encodings exhibit significant
symmetry. Consequently, there is a body of research exploring how
to best exploit symmetry while solving SAT instances [2, 3, 8, 25,
33, 40, 41]. BREAKID[8] and SHATTER[2] are static pre-processors
which detect symmetry in the formula and add symmetry-breaking
constraints, much like we do. To detect symmetry, they construct a
graph with a node for each variable/literal and compute it’s auto-
morphisms. In contrast, our program graph has a node for each MPI
action. The number of variables in our SAT encoding is quadratic in
the number of MPI actions, making symmetry detection at the for-
mula level largely inferior to our approach. With both BREAKID and
SHATTER, we observed that symmetry breaking considerably slows
down the overall runtime. [33, 40, 41] exploit symmetry dynami-
cally within the solver. Such symmetry may not even be apparent
in the SAT formula before solver execution. Since we treat the SAT
solver as a black-box, these methods are orthogonal to ours.

Exploiting Epochs and Symmetries in Analysing MPI Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

0 20 40 60
Processes

0

25

50

75

100

125

Ti
m

e
(s

)

Integrate

Mopper
Mopper-Opt
Hermes
Simian

(a) Integrate

5 10 15 20 25
Processes

0

100

200

300

Ti
m

e
(s

)

Diffusion (Timesteps=1)

Mopper-Opt
Simian

(b) Diffusion (Timesteps=1)

0 20 40 60
Processes

0

50

100

150

Ti
m

e
(s

)

MatMul (N=L=M=p)

Mopper
Mopper-Opt
Hermes
Simian

(c) MatMul (N=L=M=p)

Figure 3: Total Times

0 20 40 60
Processes

0

2

4

6

8

Ti
m

e
(s

)

Integrate

Scheduler
Analyzer
Solver

(a) Integrate

5 10 15 20 25
Processes

0

10

20

30

Ti
m

e
(s

)

Diffusion (Timesteps=1)

Scheduler
Analyzer
Solver

(b) Diffusion (Timesteps=1)

0 20 40 60
Processes

0

5

10

15

20

Ti
m

e
(s

)

MatMul (N=L=M=p)

Scheduler
Analyzer
Solver

(c) MatMul (N=L=M=p)

Figure 4: Component Times

8 CONCLUSION

This paper presents a technique to significantly reduce the search
space for examining communication deadlocks in an MPI program.
The technique exploits symmetries by way of specifying symmetry
breaking predicates. Often the symmetries may not be present glob-
ally in a program. The approach decomposes a program into self-
contained epochs that allow for composable detection of deadlocks.
Our technique is sound and complete for single-path MPI programs.

Experimental results show that exploiting symmetries and epochs
can give exponential savings in solving times. In some cases, these
gains can also be realized byMOPPER-Opt, which includes a specific
optimization for one source of local symmetry, namely consecutive
wildcard receives. In contrast, our tool SIMIAN handles epochs and
symmetries in a much more general fashion, allowing it to verify
complex benchmarks with rich communication structures where
MOPPER-Opt fails to scale, while also staying competitive on sim-
pler benchmarks due to the light-weight nature of it’s overheads.
Thus, SIMIAN subsumes all prior state-of-the-art trace verifiers for
MPI programs.

As a part of future work, we will consider an extension of sym-
metries and epochs to multi-path programs. Further, we would like
to expand the scope of our tool to a larger set of MPI primitives
and evaluate against recent benchmarks such as those discussed

in [29]. It would also be interesting to explore the applicability of
our techniques in concurrency frameworks other than MPI.

REFERENCES

[1] Fadi A Aloul, Arathi Ramani, Igor L Markov, and Karem A Sakallah. 2002. Solving
difficult SAT instances in the presence of symmetry. In Proceedings 2002 Design
Automation Conference. 731–736.

[2] Fadi A Aloul, Karem A Sakallah, and Igor L Markov. 2006. Efficient symmetry
breaking for boolean satisfiability. IEEE Trans. Comput. 55, 5 (2006), 549–558.

[3] Markus Anders. 2022. SAT Preprocessors and Symmetry. arXiv preprint
arXiv:2205.12799 (2022).

[4] Stanislav Böhm, Ondřej Meca, and Petr Jančar. 2016. State-space reduction of
non-deterministically synchronizing systems applicable to deadlock detection in
MPI. In International Symposium on Formal Methods. Springer, 102–118.

[5] Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. 1993. Exploiting Symme-
try In Temporal Logic Model Checking. In Proceedings of the 5th International
Conference on Computer Aided Verification (CAV ’93). 450–462.

[6] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. 1996.
Symmetry-breaking predicates for search problems. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifth International Conference
(KR’96), Vol. 5. Morgan Kaufmann Pub, 148.

[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[8] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. 2016.
Improved static symmetry breaking for SAT. In International Conference on Theory
and Applications of Satisfiability Testing. Springer, 104–122.

[9] Alastair F. Donaldson and Alice Miller. 2006. A Computational Group Theoretic
Symmetry Reduction Package for the Spin Model Checker. In Algebraic Method-
ology and Software Technology, 11th International Conference, AMAST, Proceedings

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rishabh Ranjan, Ishita Agrawal, and Subodh Sharma

(Lecture Notes in Computer Science, Vol. 4019), Michael Johnson and Varmo Vene
(Eds.). Springer, 374–380.

[10] Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: static
analysis for MPI. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, Hal
Finkel (Ed.). ACM, 3:1–3:10.

[11] E. Allen Emerson and A. Prasad Sistla. 1993. Symmetry and Model Checking. In
Computer Aided Verification, 5th International Conference, CAV (Lecture Notes in
Computer Science, Vol. 697). Springer, 463–478.

[12] Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: scalable deadlock detection
for concurrent programs. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE), Hong Kong, China,
November 16 - 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-
Anne D. Storey (Eds.). ACM, 353–365.

[13] Vojtech Forejt, Saurabh Joshi, Daniel Kroening, Ganesh Narayanaswamy, and
Subodh Sharma. 2017. Precise Predictive Analysis for Discovering Communica-
tion Deadlocks in MPI Programs. ACM Trans. Program. Lang. Syst. 39, 4 (2017),
15:1–15:27.

[14] Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma.
2014. Precise predictive analysis for discovering communication deadlocks in
MPI programs. In International Symposium on Formal Methods. Springer, 263–278.

[15] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and
Matthias S. Müller. 2012. MPI runtime error detection with MUST: advances in
deadlock detection. In SC Conference on High Performance Computing Networking,
Storage and Analysis, SC ’12, Salt Lake City, UT, USA - November 11 - 15, 2012,
Jeffrey K. Hollingsworth (Ed.). IEEE/ACM, 30.

[16] Jim Holt, Anant Agarwal, Sven Brehmer, Max J. Domeika, Patrick Griffin, and
Frank Schirrmeister. 2009. Software Standards for the Multicore Era. IEEE Micro
29, 3 (2009), 40–51.

[17] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Software Eng.
23, 5 (1997), 279–295.

[18] Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by
SMT Encoding. In NASA Formal Methods - 7th International Symposium, NFM
2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings (Lecture Notes in Computer
Science, Vol. 9058), Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.).
Springer, 219–233.

[19] Yu Huang, Eric Mercer, and Jay McCarthy. 2013. Proving MCAPI executions are
correct using SMT. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013,
Ewen Denney, Tevfik Bultan, and Andreas Zeller (Eds.). IEEE, 26–36.

[20] YuHuang, Benjamin Ogles, and Eric Mercer. 2020. A predictive analysis for detect-
ing deadlock in MPI programs. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 18–28.

[21] C. Norris Ip and David L. Dill. 1993. Better Verification Through Symmetry. In
International Conference on Computer Hardware Description Languages and their
Applications - CHDL (IFIP Transactions), David Agnew, Luc J. M. Claesen, and
Raul Camposano (Eds.). 97–111.

[22] C. Norris Ip and David L. Dill. 1996. Verifying Systems with Replicated Com-
ponents in Murphi. In Computer Aided Verification, 8th International Conference,
CAV (Lecture Notes in Computer Science, Vol. 1102). Springer, 147–158.

[23] Tommi Junttila and Petteri Kaski. 2007. Engineering an efficient canonical labeling
tool for large and sparse graphs. In 2007 Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 135–149.

[24] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound deadlock prediction.
Proc. ACM Program. Lang. 2, OOPSLA (2018), 146:1–146:29.

[25] Hadi Katebi, Karem A Sakallah, and Igor L Markov. 2010. Symmetry and satis-
fiability: An update. In International Conference on Theory and Applications of
Satisfiability Testing. Springer, 113–127.

[26] Dhriti Khanna, Rahul Purandare, and Subodh Sharma. 2021. Synthesizing Multi-
threaded Tests from Sequential Traces to Detect Communication Deadlocks. In
14th IEEE Conference on Software Testing, Verification and Validation, ICST 2021,
Porto de Galinhas, Brazil, April 12-16, 2021. IEEE, 1–12.

[27] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare. 2018.
Dynamic symbolic verification of mpi programs. In International Symposium on
Formal Methods. Springer, 466–484.

[28] Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch.
2003. MARMOT: An MPI Analysis and Checking Tool. In Parallel Computing:
Software Technology, Algorithms, Architectures and Applications, PARCO 2003,
Dresden, Germany (Advances in Parallel Computing, Vol. 13), Gerhard R. Joubert,
Wolfgang E. Nagel, Frans J. Peters, and Wolfgang V. Walter (Eds.). Elsevier, 493–
500.

[29] Mathieu Laurent, Emmanuelle Saillard, and Martin Quinson. 2021. The MPI
BUGS INITIATIVE: a Framework for MPI Verification Tools Evaluation. In 2021
IEEE/ACM 5th InternationalWorkshop on Software Correctness for HPCApplications
(Correctness). IEEE, 1–9.

[30] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and
Sorin Lerner. 2012. Verifying GPU Kernels by Test Amplification. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’12). ACM, 383–394.
[31] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César

Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocol-
based verification of message-passing parallel programs. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM,
280–298.

[32] Anna Lubiw. 1981. Some NP-complete problems similar to graph isomorphism.
SIAM J. Comput. 10, 1 (1981), 11–21.

[33] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. 2018.
Cdclsym: Introducing effective symmetry breaking in sat solving. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 99–114.

[34] Matthias S. Mueller, Ganesh Gopalakrishnan, Bronis R. de Supinski, David
Lecomber, and Tobias Hilbrich. 2011. Dealing with MPI Bugs at Scale: Best
Practices. In In Automatic Detection, Debugging, and Formal Verification.

[35] Micha Sharir. 1981. A strong-connectivity algorithm and its applications in data
flow analysis. Computers & Mathematics with Applications 7, 1 (1981), 67–72.

[36] Subodh Sharma. 2013. Predictive Analysis Of Message Passing Applications. Ph. D.
Dissertation. University of Utah. https://collections.lib.utah.edu/ark:/87278/
s6mk9n24

[37] Stephen F. Siegel. 2007. Verifying Parallel Programs with MPI-Spin. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 14th European
PVM/MPI User’s Group Meeting, Paris, France, September 30 - October 3, 2007, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 4757), Franck Cappello, Thomas
Hérault, and Jack J. Dongarra (Eds.). Springer, 13–14.

[38] Stephen F. Siegel and Timothy K. Zirkel. 2011. FEVS: A Functional Equivalence
Verification Suite for High-Performance Scientific Computing. Math. Comput.
Sci. 5, 4 (2011), 427–435.

[39] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

[40] Rodrigue Konan Tchinda and Clémentin Tayou Djamegni. 2019. Enhancing static
symmetry breaking with dynamic symmetry handling in CDCL SAT solvers.
International Journal on Artificial Intelligence Tools 28, 03 (2019), 1950011.

[41] Tevich Treethanyaphong and Athasit Surarerks. 2018. Dynamic symmetry break-
ing in SAT using augmented clauses with a polynomial-time lexicographic prun-
ing. In 2018 2nd European Conference on Electrical Engineering and Computer
Science (EECS). IEEE, 242–247.

[42] Sarvani S Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M
Kirby. 2008. ISP: a tool for model checking MPI programs. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming.
285–286.

[43] Jeffrey S. Vetter and Bronis R. de Supinski. 2000. Dynamic Software Testing of
MPI Applications with Umpire. In Proceedings Supercomputing 2000, November
4-10, 2000, Dallas, Texas, USA. IEEE Computer Society, CD-ROM, Jed Donnelley
(Ed.). IEEE Computer Society, 51.

[44] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R. de Supin-
ski, Martin Schulz, and Greg Bronevetsky. 2010. A Scalable and Distributed
Dynamic Formal Verifier for MPI Programs. In Conference on High Performance
Computing Networking, Storage and Analysis, SC 2010, New Orleans, LA, USA,
November 13-19, 2010. IEEE, 1–10.

[45] Thomas Wahl and Alastair F. Donaldson. 2010. Replication and Abstraction:
Symmetry in Automated Formal Verification. Symmetry 2, 2 (2010), 799–847.

[46] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin
Zheng, Zheng Zhang, and Geoffrey M. Voelker. 2009. MPIWiz: subgroup repro-
ducible replay of mpi applications. In Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPOPP 2009, Raleigh,
NC, USA, February 14-18, 2009. 251–260.

[47] Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun,
Chun Huang, and Wei Dong. 2020. Symbolic verification of message passing
interface programs. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 1248–1260.

[48] Wenting Zhao. 2017. Encoding Lexicographical Ordering Constraints in SAT.
(2017).

[49] Manchun Zheng, Michael S Rogers, Ziqing Luo, Matthew B Dwyer, and Stephen F
Siegel. 2015. CIVL: formal verification of parallel programs. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 830–835.

https://collections.lib.utah.edu/ark:/87278/s6mk9n24
https://collections.lib.utah.edu/ark:/87278/s6mk9n24

	Abstract
	1 Introduction
	2 Preliminaries
	3 Example
	4 Epoch Decomposition
	4.1 Matchset Refinement
	4.2 Caching
	4.3 Correctness

	5 Symmetry in MPI Programs
	5.1 Symmetry Detection
	5.2 Symmetry Breaking Predicates
	5.3 Complexity Analysis

	6 Results
	6.1 Implementation
	6.2 Baselines
	6.3 Benchmark Summary
	6.4 Variations
	6.5 Runtime
	6.6 Communication Structure
	6.7 Component-wise Times
	6.8 Representative Plots

	7 Related Work
	8 Conclusion
	References

