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Abstract

Among various distance functions for graphs, graph and subgraph edit distances
(GED and SED respectively) are two of the most popular and expressive mea-
sures. Unfortunately, exact computations for both are NP-hard. To overcome this
computational bottleneck, neural approaches to learn and predict edit distance in
polynomial time have received much interest. While considerable progress has
been made, there exist limitations that need to be addressed. First, the efficacy of
an approximate distance function lies not only in its approximation accuracy, but
also in the preservation of its properties. To elaborate, although GED is a metric, its
neural approximations do not provide such a guarantee. This prohibits their usage
in higher order tasks that rely on metric distance functions, such as clustering or
indexing. Second, several existing frameworks for GED do not extend to SED due
to SED being asymmetric. In this work, we design a novel siamese graph neural
network called GREED, which through a carefully crafted inductive bias, learns
GED and SED in a property-preserving manner. Through extensive experiments
across 10 real graph datasets containing up to 7 million edges, we establish that
GREED is not only more accurate than the state of the art, but also up to 3 orders of
magnitude faster. Even more significantly, due to preserving the triangle inequality,
the generated embeddings are indexable and consequently, even in a CPU-only
environment, GREED is up to 50 times faster than GPU-powered baselines for
graph / subgraph retrieval.

1 Introduction and Related Work

A distance function on any dataset, including graphs, is a fundamental operator. Among several
distance measures on graphs, edit distance is one of the most powerful and popular mechanisms [30,
51, 49, 20]. Edit distance can be posed in two forms: graph edit distance (GED) and subgraph edit
distance (SED). Given two graphs G1 and G2, GED(G1,G2) returns the minimum cost of edits needed
to convert G1 to G2, i.e., for G1 to become isomorphic to G2. An edit can be the addition or deletion of
edges and nodes, or the replacement of edge or node labels, with an associated cost. In SED(G1,G2),
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Figure 1: A sample set of graphs (g1-g5), their corresponding GED and SED matrices and
an example of a graph mapping from g1 to g2. The dashed nodes and edges in the mapping
represent dummy nodes and edges. The red arrows denote either insertion or change of label.

the goal is to identify the minimum cost of edits so that G1 is a subgraph (subgraph isomorphic) of
G2. For examples, see Fig. 1.

GED is typically restricted to graph databases containing small graphs to facilitate distance
computation with queries of similar sizes. As an example, given a repository of molecules, and a
query molecule, we may want to identify the closest molecule in the repository that is similar to the
query [36, 20]. SED, on the other hand, is useful when the database has large graphs and the query
is a comparatively smaller graph. As examples, subgraph queries are used on knowledge graphs
for analogy reasoning [17]. In PPI and chemical compounds, SED is of central importance to identify
functional motifs and binding pockets [42, 20, 16, 38, 35, 37]. Unfortunately, both GED and SED are
NP-hard to compute [49, 20]. To mitigate this computational bottleneck, several heuristics [10, 13]
and index structures [20, 49, 30, 51] have been proposed. Recently, graph neural networks have been
shown to be effective in learning and predicting GED [3, 45, 29, 4, 50, 46, 14, 2]. The basic goal
in all these algorithms is to learn a neural model from a training set of graph pairs and their distances,
such that, at inference time, given an unseen graph pair, we are able to predict its distance accurately.
Other works seek to incorporate non-neural graph matching solvers [40], or generic integer linear
programming solvers [33, 34], to learn the graph matching task from natural data such as images in
an end-to-end trainable manner. Here, the NP-hardness of the problem is relegated to the non-neural
component, and the neural part is only concerned with representation learning, unlike in our setting
where we want the neural network to handle both. In the domain of subgraphs, NEUROMATCH [39]
and ISONET [41] generate embeddings to detect subgraph isomorphism. NSC [44] generates
subgraph level embeddings that can count the number of subgraph instances of a query graph on
a target graph. While the progress made is impressive, there is scope to do more.

• Preservation of theoretical properties: GED is a metric distance function. While SED is not
metric due to being asymmetric, it satisfies the triangle inequality, non-negativity, and subgraph-
identity (SED = 0 for subgraphs). Metrics (and triangle inequality) exhibit significant compu-
tational advantages over non-metrics. Specifically, operations such as clustering [19], nearest
neighbor search [15, 21, 43, 12], outlier detection [1] and diameter computation [23] admit efficient
algorithms precisely when the objects being studied are embedded in a metric space. Existing
neural approaches do not preserve these properties, which limits their usability for these higher
order tasks.

• Indexable embeddings: Given graph pair G1 and G2, neural approaches first embed them into a
feature space. Next, they compute a distance on these feature vectors, which is an approximation
of the distance in the original graph space. The literature on indexing range and k-NN queries over
feature vectors is rich [18, 25, 12]. Index structures typically allow sub-linear computation costs
with respect to the database size. Unfortunately, none of the existing neural approaches generate
indexable feature vectors since they perform pair-dependent computations. Specifically, the neural
computations on G1 depend on both G1 and G2 (and same for G2). Consequently, the computations
can only be done at query-time and thereby negating the possibility of indexing pre-computed
feature space embeddings.

• Modeling SED: Prior to this work, there have been no neural approaches for SED. Further, existing
neural methods to learning GED cannot easily be adapted to learn SED. While GED is symmetric,
SED is not. Several neural architectures for GED have the assumption of symmetry at its core and
hence modeling SED is non-trivial [3, 4, 29].

• Exponential Search Space: Computing SED(G1,G2) conceptually requires us to compare the
query graph G1 with the exponentially many subgraphs of the target graph G2. Therefore, it is
imperative that the model has an efficient and effective mechanism to prune the search space
without compromising on the prediction accuracy.
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Figure 2: The architecture of GREED.

In this work, we address the above limitations through the following contributions.

• Novel neural architecture: We address the above mentioned challenges through a novel archi-
tecture called GREED: GRaph Embeddings for Edit Distances. GREED utilizes a siamese graph
isomorphism network [47] to embed graphs in a pair-independent fashion. A simple, but theo-
retically well-characterized, function on this embedding space predicts the SED and GED. The
carefully crafted prediction function serves as an inductive bias for the model, which, in addition
to enabling high generalization accuracy, preserves the metric property of GED and the triangle
inequality of SED in the embedding space.

• Indexable embeddings: Owing to pair-independent embeddings and preservation of the triangle
inequality over the embedding space for both SED and GED, GREED can exploit the rich literature
on index structures [18, 25, 12] to boost efficiency.

• Accurate, Fast and Scalable: Extensive experiments on real graph datasets containing up to a
million nodes establish that GREED is more accurate in both GED and SED when compared to the
state of the art algorithms and is more than 3 orders of magnitude faster in range and k-NN queries.
Furthermore, owing to indexable embeddings, even in a CPU-only environment, GREED is up to
50 times faster than the closest baseline run on a GPU.

2 Preliminaries and Problem Formulation

We denote a labeled undirected graph as G = (V, E ,L) where V is the node set, E is the edge set and
L : V ∪ E → Σ is the labeling function over nodes and edges. Σ is the universe of all labels and
contains a special empty label ε. L(v) and L(e) denote the labels of node v and edge e respectively.
G1 ⊆ G2 denotes that G1 is a subgraph of G2.

The problem of learning GED and SED [20] is defined as follows.

Problem 1 (Learning GED/SED) Given a training set of tuples of the form 〈G1,G2,GED(G1,G2)〉
(or G1,G2, SED(G1,G2)〉), learn a neural model to predict GED(Q1,Q2) (or SED(Q1,Q2)) on
unseen graphs Q1 and Q2.

For details on the exact definition of GED and SED, we refer to the appendix (App. A).

2.1 Properties of GED and SED

Theorem 1 Let d̂ : Σ× Σ → R+
0 be a distance function over Σ, where (i) d̂(`1, `2) = 0 if `1 = ε,

and (ii) d̂(`1, `2) = d(`1, `2) otherwise; the following holds: SED(G1,G2) = ĜED(G1,G2), where
ĜED denotes GED with d̂ as the label set distance function. In simple words, the SED between two
graphs is equivalent to GED with a label set distance function where we ignore insertion costs.

PROOF. See App. B.1.

Observation 1 GED satisfies the triangle inequality if the distance function d over label set Σ
satisfies the triangle inequality [20]. As defined in the paragraph following Def. 2, d satisfies the
triangle inequality [20]. Furthermore, it is trivial to see that GED is symmetric, non-negative and
satisfies identity as long as d satisfies the analogues. Hence, GED with distance function d is metric.

Theorem 2 SED is not metric due to violating the properties of symmetry and identity. However, it
satisfies the triangle inequality, i.e., SED(G1,G3) ≤ SED(G1,G2) + SED(G2,G3).
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PROOF: See App. B.2 for details.

Observation 2 Computing GED and SED is NP-hard [49].

Hereon, we use GED as the illustrative distance function being modeled. The architecture trivially
extends to SED. The specific places that need separate treatment will be discussed explicitly.

3 GREED: The Proposed Architecture
Fig. 2 presents the architecture of GREED. The input to our learning framework is a pair of graphs GQ
(query), GT (target) along with the supervision data GED(GQ,GT ) (or SED(GQ,GT )). Our objective
is to train a model that can predict GED on unseen query and target graphs. The design of our model
must be cognizant of the fact that computing GED is NP-hard and high quality training data is scarce.
Thus, we use a Siamese architecture [11], where there are two networks with shared parameters
applied to two inputs independently to compute representations.

3.1 Siamese Graph Neural Network

As depicted in Fig. 2a, we use a siamese graph neural network (GNN) with shared parameters to
embed both GQ and GT . While one could use two different GNN models for the query and the target,
this design increases the model parameters and consequently, the training time. Furthermore, an
architecture with higher number of parameters also requires larger amount of training data, which is
difficult due to GED being NP-hard.

Fig. 2b focuses on the GNN component of GREED. We next discuss each of its individual components.

Pre-MLP: xv in Fig. 2b is a one-hot encoding of the categorical node labels. The dimension of the
one-hot vector increases linearly with the number of labels in a graph database and hence can be
very large. The primary-job of the pre-mlp is to reduce it to a desirable dimension size through the
operation µGv = MLP (xv). Indeed, a similar effect may also be obtained by directly feeding the one-
hot encoding to the first layer of GIN. However, since a GIN constructs embeddings by incorporating
both structure and label information, one may desire a different dimensionality in the GIN layers.
Hence, the pre-mlp is motivated more from a conceptual separation of its task to that of GIN rather
than a purely performance point of view (See App. G). We do not explicitly model edge labels in
our experiments. GREED can easily be extended to edge labels by using GINE [22] instead of GIN.

Graph Isomorphism Network (GIN): GIN [47] consumes the information from the Pre-MLP
to learn hidden representations that encode both the graph structure as well as the node feature
information. GIN is as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test [26] in
distinguishing graph structures. Since our goal is to accurately characterize graph topology and learn
similarity, GIN emerges as the natural choice. GIN develops its expressive power by using an injective
aggregation function. Specifically, in the initial layer, each node v in graph G is characterized by the
representation learned by the MLP, i.e., hGv,0 = µGv . Subsequently, in each hidden layer i, we learn
an embedding through the following transformation.

hGv,i = MLP

(1 + εi) · hGv,i−1 +
∑

u∈NG(v)

hGu,i−1

 (1)

Here, εi is a layer-specific learnable parameter, NG(v) is one-hop neighbourhood of the node v, and
hGv,0 = µGv . The k-th layer embedding is hGv,k, where k is final hidden layer.

Concatenation, Pool and Post-MLP: Intuitively, hGv,i captures a feature-space representation of the
i-hop neighborhood of v. Typically, GNNs operate on node or edge level predictive tasks, such as
node classification or link prediction, and hence, the node representations are passed through an
MLP for the final prediction task. In our problem, we need to capture a graph level representation.
Furthermore, the representation should be rich enough to also capture the various subgraphs within
the input graph so that SED can be predicted accurately. To fulfil these requirements, we first
concatenate the representation of a node across all hidden layers, i.e., the final node embedding
is zGv = CONCAT

(
hGv,i,∀i ∈ {1, 2, · · · , k}

)
. This allows us to capture a multi-granular view of

the subgraphs centered on v at different radii in the range [1, k]. Next, to construct the graph-level
representation, we perform a sum-pool, which adds the node representations to give a single vector.
This information is then fed to the Post-MLP to enable post-processing. Mathematically:
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ZG = MLP(zG) = MLP

(∑
v∈V

zGv

)
(2)

GED and SED Prediction: The final task is to predict the GED (and SED) as a function of query
graph embedding ZGQ and target graph embedding ZGT . The natural choice would be to feed these
embeddings into another MLP to learn GED(ZGQ ,ZGT ). This MLP can then be trained jointly with
the graph embedding model in an end-to-end fashion. However, an MLP prediction does not have
any theoretical guarantees with respect to the preservation of metric properties of GED and the
triangle inequality of SED. We, therefore, focus on learning prediction functions Fg (ZGQ ,ZGT ) and
Fs (ZGQ ,ZGT ) for GED and SED respectively, such that they are accurate and respects the desirable
properties from the original graph space. As we will empirically substantiate in § 4.5, the inductive
bias injected through the prediction functions also lead to more effective learning over low volumes
of training data than an MLP.

3.1.1 GED

We require the following four properties to ensure that the prediction is also a metric.

Fg (ZGQ ,ZGT ) ≥ 0 (3)
Fg (ZGQ ,ZGT ) = 0 ⇐⇒ ∀i : ZGQ [i] = ZGT [i] (4)
Fg (ZGQ ,ZGT ) = Fg (ZGT ,ZGQ) (5)
Fg (ZGQ ,ZGT ) ≤ Fg (ZGQ ,ZG′) + Fg (ZG′ ,ZGT ) (6)

To achieve this, we establish an important connection of metrics on vector spaces to norms. Every
norm ‖.‖ gives a metric (x,y) 7→ ‖x − y‖. Moreover for a metric, there exists a norm ‖.‖ such
that the metric can be expressed as (x,y) 7→ ‖x − y‖, iff the metric is translation invariant and
homogeneous. Thus, we add these properties to the desiderata for Fg:

Fg (ZGQ + k,ZGT + k) = Fg (ZGQ ,ZGT ) ,∀k ∈ Rd (7)
Fg (rZGQ , rZGT ) = |r|Fg (ZGQ ,ZGT ) ,∀r ∈ R (8)

Armed with these observations, we define the class of functions that may be used for Fg .

Observation 3 Fg may be defined as any function (x, y) 7→ ‖x − y‖ for some norm ‖.‖ over the
vector space Rd such that Fg satisfies Eqs. 7 - 8.

The Lp norm satisfies Obs. 3. Hence, we define Fg as:

Fg (ZGQ ,ZGT ) = ‖ZGQ − ZGT ‖p (9)

In our implementation we use the L2 norm. Finally, the parameters of the entire model are learned by
minimizing the mean squared error (here T is the training set).

L =
1

|T|
∑

∀〈GQ,GT 〉∈T

(Fg (ZGQ ,ZGT )− GED (GQ,GT ))
2 (10)

Intuition: Regardless of the graph representations generated by our model, Fg ensures that the
predicted distance is a metric. One the other hand, by training the model to produce embeddings
ZGQ and ZGT such that Fg (ZGQ ,ZGT ) ≈ GED (ZGQ ,ZGT ), we enforce a rich structure on the
embedding space such that Fg is also accurate. Thus, Fg injects an inductive bias satisfying the dual
needs of accuracy and preservation of original space properties.

3.1.2 SED

SED satisfies non-negativity and triangle inequality. Following a similar reasoning as above, we
define Fs as follows:

Fs

(
ZGQ ,ZGT

)
= ‖ReLU(ZGQ − ZGT )‖2 =

∥∥max
{
0,ZGQ − ZGT

}∥∥
2

(11)

Intuitively, for those co-ordinates where the value of ZGQ is greater than ZGT , a distance penalty is
accounted by Fs in terms of how much those values differ; otherwise Fs considers 0. This follows
the intuition that the SED accounts for those features of GQ that are not in GT . Moreover, consistent
with SED, the additional features in GT that are not in GQ, do not incur any cost.
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Lemma 1 The following properties hold on predicted SED.

1. Fs (ZGQ ,ZGT ) ≥ 0
2. Fs (ZGQ ,ZGT ) = 0 ⇐⇒ ZGQ ≤ ZGT
3. Fs (ZGQ ,ZGT ) ≤ Fs(ZGQ ,ZGT ′ ) + Fs(ZGT ′ ,ZGT )

PROOF. Properties (1) and (2) follow from the definition of F itself. Property (3) follows from the
fact that we take the L2 norm. Formally, we state it as follows.

Lemma 2 Fs (ZGQ ,ZGT ) ≤ Fs(ZGQ ,ZGT ′ )+Fs(ZGT ′ ,ZGT ), whereFs(x,y) = ‖ReLU(x−y)‖
for any monotonic norm ‖.‖.

PROOF. See App. B.4.

3.2 Characterization of GREED
Importance of pair-independence and siamese architecture: A pair-independent siamese archi-
tecture enables theoretical guarantees for GREED by constraining the model to learn a single mapping
from graph space to embedding space for both query and target. Despite these restrictions, GREED
outperforms prior works which freely use cross-graph information and don’t provide theoretical
guarantees. This further confirms that the siamese architecture is a useful prior.
Complexity Analysis: The complexity of GED and SED inference in GREED is linear in the number
of nodes and edges in the query and target graphs (See App. C for derivation). This computation cost
is drastically lower than the factorial computation cost of optimal GED and SED. With respect to
neural methods for graph similarity [3, 4, 29, 45, 50], all have at least quadratic computation cost,
i.e., O(|V|2).
Indexing Embeddings: Since the generated embeddings for both GED and SED satisfy triangle
inequality, they are indexable leading to fast querying times. We develop an index structure to exploit
this property. Due to space limitations, the details are included in App. D. In addition, we also
design a neighborhood decomposition scheme, which enables fast pruning of the exponential search
space § D.4. In § 4.3, we empirically analyze the impact of index structures on querying time.

4 Empirical Evaluation

In this section, we establish the following:

• Efficacy: GREED is more accurate than the state of the art approaches for both GED and SED.
• Efficiency: GREED is orders of magnitude faster than existing approaches and scales well to

graphs with millions of nodes.
• Scalability: Pair-independence and indexability further enhances the scalability of GREED and

enables it to be run on CPU-only platforms.

Our code base and datasets are available at https://github.com/idea-iitd/greed.

4.1 Experimental Setup

We use a machine with an Intel Xeon Gold 6142 processor and GeForce GTX 1080 Ti GPU for all
our experiments.
Datasets: Table A lists the datasets used for benchmarking. Further details on the dataset semantics
are provided in the App. E. We include a mixture of both graph databases (#graphs >1), as well as
single large graphs (#graphs = 1). Linux and IMDB are unlabeled. We note that this is the first study
to evaluate neural graph distance approaches on million-scale graphs.
Baselines: To evaluate performance in GED, we compare with SIMGNN [3], GENN-A∗ [45],
H2MN[50] and GOTSIM [14]. These are the most recent neural frameworks and have shown better
efficacy than other neural approaches such as SIMGNN [3], GRAPHSIM [4], and GMN [29].

For SED, no neural approaches exist. However, H2MN and SIMGNN can be trained by replacing
GED with SED along with minor modifications in training. NSC [31] is a method for counting
subgraphs using graph embeddings. Since this is a related operation, we use NSC as a baseline by
changing the loss function to minimize the RMSE between true and predicted SED. We also use
NEUROMATCH [39] as a baseline, which was originally designed to detect subgraph isomorphism.
While NEUROMATCH cannot predict SED, it generates a violation score, which can be interpreted as

6
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Methods AIDS’ Linux IMDB

GREED 0.796 0.415 6.734
H2MN 0.994 0.734 86.077

GENN-A∗ 0.907 0.267 NA
GOTSIM 0.996 0.574 37.831
SIMGNN 1.037 0.666 66.250

Branch 3.322 2.474 6.875
MIP-F2 2.929 1.245 82.124

(a) Prediction of GED

Methods Dblp Amazon PubMed CiteSeer Cora_ML Protein AIDS

GREED 0.964 0.495 0.728 0.519 0.635 0.524 0.512
H2MN 1.470 1.294 1.213 1.502 1.446 0.941 0.749

NSC NA 2.141 1.095 1.66 1.661 0.662 0.562
SIMGNN 1.482 2.810 1.322 1.781 1.289 1.223 0.696
Branch 2.917 4.513 2.613 3.161 3.102 2.391 1.379
MIP-F2 3.427 5.595 3.399 4.474 3.871 2.249 1.537

(b) Prediction of SED.

Table 1: (a) Datasets. (b-c) RMSE scores (lower is better) in (a) GED and (b) SED. GENN-A∗
does not scale on graphs beyond 10 nodes and hence results in IMDB are not reported. NSC
does not scale in Dblp due to memory consumption.

the likelihood of the query being subgraph isomorphic to the target. The violation score can be used as
a proxy for SED and used in ranking of k-NN (k-NearestNeighbour) queries. Thus, NEUROMATCH
comparisons are limited to k-NN queries on SED. GMN [29], GRAPHSIM [4], GOTSIM [14] and
GENN-A∗ are not included since they cannot be easily adapted for SED. See App. F for details.

In the non-neural category, we use mixed integer programming based method MIP-F2 [27] with a
time bound of 0.1 seconds per pair for both GED and SED. MIP-F2 provides the optimal solution
given infinite time. We also compare with BRANCH [5], which achieves an excellent trade-off
between accuracy and time [6]. BRANCH uses linear sum assignment problem with error-correction
(LSAPE) to process the search space. We use GEDLIB’s [7] implementation of these methods.
Training (and Test) Data Generation: For GED, we use 〈query, target〉 graph pairs from IMDB,
AIDS’, and Linux. Our setup is identical to SIMGNN [3] and H2MN [50].

For SED, the target graphs are taken from datasets listed in Table A. For the query graph, in AIDS,
we use known functional groups [38]. In the rest of the graph datasets, queries are sampled by
performing a random BFS traversal (depth up to 5). Table A shows the average query sizes (|VQ|,
|EQ|).We use mixed integer programming method F2 [27] implemented in GEDLIB [7] with a large
time limit to generate ground-truth data.
Train-Validation-Test: We use 100K query-target pairs for training and 10K pairs each for vali-
dation and test. All models are trained till validation loss is minimized or there is less than 0.05%
change in validation loss over a number of extended epochs. For GREED, we set the number of layers
in GIN to 8. The hidden layer dimension is set to 64. For all baselines, we use the default parameters
suggested by the authors.

4.2 Prediction Accuracy of SED and GED

Tables 1a and 1b present the accuracy of all techniques on GED and SED in terms of Root Mean
Square Error (RMSE). GREED outperforms all other techniques in 9 out of 10 settings across GED
and SED. While H2MN and NSC are the second best performers in SED, GENN-A∗ performs well in
GED. GENN-A∗, however, is extremely slow and does not scale on graphs of size beyond 10. H2MN,
thus, provides the second best balance between efficacy and efficiency after GREED. The gap in
accuracy is the highest in IMDB for GED, where GREED is more than 10 times better than the neural
baselines. IMDB graphs are significantly denser and larger than AIDS’ or Linux. Thus, computing
the optimal GED is harder. While all techniques have higher errors in IMDB, the deterioration is more
severe in the baselines indicating that GREED scales better with graph sizes.

Impact of Query Size: We next investigate how the accuracy varies against the query size.
Intuitively, the task gets harder with query size since the combinatorial space of possible maps
increases exponentially. For this analysis, we compare GREED with H2MN in IMDB and Dblp for
GED and SED respectively. GENN-A∗ fails to scale on both datasets.

In Fig. 3, we plot the heat map of RMSE against query graph size. In this plot, each dot corresponds
to a query graph GQ. The co-ordinate of a query is (GED(GQ,GT ), |VQ|) (analogously defined for
SED). The color of a dot represents the RMSE; the darker the color, the higher is the RMSE. When
we compare the heat maps of GREED with H2MN, we observe that H2MN is noticeably darker.
Furthermore, the concentration of dark colors is noticeably higher on the upper-right corner indicating
deterioration with larger query sizes and higher distance values. This indicates that GREED scales
better with query sizes and distances.
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Figure 3: Heat Map of RMSE in (a-b) GED and (c-d) SED against query size in IMDB and Dblp.

Methods AIDS’ Linux IMDB

GREED 0.80 0.89 0.87
H2MN 0.74 0.88 0.80

GENN-A∗ 0.75 0.90 NA
SIMGNN 0.72 0.86 0.67

(a) Ranking in GED.

Methods PubMed CiteSeer Cora_ML Protein AIDS

GREED 0.90 0.90 0.91 0.75 0.80
H2MN 0.87 0.88 0.88 0.70 0.72

NSC 0.89 0.88 0.88 0.74 0.78
SIMGNN 0.85 0.87 0.86 0.63 0.73

NEUROMATCH 0.70 0.75 0.73 0.57 0.59

(b) Ranking in SED.

Table 2: Kendall’s tau scores (higher is better).

Visualization: A case study to visually illustrate the efficacy of GREED is provided in App. I.
Range and k-NN queries: To quantify performance in range and k-NN queries, we measure F1-

score (Range query) and Kendalls’s tau (k-NN) [24] of the predicted answer set, when compared
against the ground truth. In Figs. 4a-4h, we measure the performance in range queries. In SED,
GREED consistently outperforms all baselines in F1-score. In GED, the trend remains similar.
Although, GENN-A∗ outperforms GREED for a brief region in Linux, overall, GREED has the highest
F1-score. We also note the GENN-A∗ is not included in Fig. 4h since it fails to scale on IMDB. In
k-NN queries (Tables 2a and 2b), GREED outperforms all algorithms in SED. In GED, similar to
the trend in range queries, GREED is the dominant method and GENN-A∗ marginally outperforms
GREED in Linux.

4.3 Efficiency

Tables 3a-3b present the inference times per 10K query-target pairs. In this experiment, we do not
index embeddings by GREED so that the comparison unearths the raw difference in computation
efficiency of solely the neural architectures. As visible, GREED is up to 1800 times faster than the
non-neural baselines and up to 10 to 20 times faster than H2MN, the current state of the art in GED
prediction. Also note that GENN-A∗ is exorbitantly slow (Table 3a). GENN-A∗ is slower since it not
only predicts the GED but also the alignment via an A∗ search. While the alignment information is
indeed useful, computing this information across all graphs in the database may generate redundant
information since an user is typically interested only on a small minority of graphs that are in the
answer set. In App. H, we discuss this issue in detail.

4.4 Pair-independence and Indexability

Here, we showcase how pair-independent embeddings, and ensuring triangle inequality leads to
further boost in scalability. For this experiment, we use the three largest datasets of PubMed, Amazon
and Dblp. For each dataset, we pre-compute GREED embeddings of all database graphs by exploiting
pair-independent embeddings. Such pre-computation is not possible in the neural or non-neural
baselines. Furthermore, since the predictions of GREED satisfy triangle inequality, we index the
pre-computed embeddings of the database graphs as discussed in § D.1. Consequently, for GREED,
we only need to embed the query graph and evaluate F to make predictions at query time. Table 3c
presents the results on range and 10-NN queries. When computations are done on a GPU, GREED is
more than 1000 times faster than H2MN. In the absence of a GPU, H2MN is practically infeasible
since expensive pair-dependent computations are done at query time. In contrast, even on a CPU,
through indexing, GREED is ≈ 50 times faster than GPU-based H2MN. Note that indexing enables
up to 3-times speed-up on GREED over linear scan, which demonstrates the gain from ensuring
triangle inequality. These results establish that GREED breaks new ground in scalability of neural
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Figure 4: F1-score in range queries on SED (a-e) and GED (f-h). The range threshold is set as a
percentage of the max distance observed in the test set. The legend for Figs. (a)-(e) is provided
in (a) and for (f-h) is provided in (h). (i-k) Ablation study to analyze the impact of siamese
architecture and function F . The legend for Figs. (i)-(k) is provided in (i).

Methods AIDS’ Linux IMDB

GREED 0.49 0.70 0.63
H2MN 9.50 8.74 8.83

GENN-A∗ 12190 1340 NA
BRANCH 10.70 8.24 127.90
MIP-F2 593.34 191.88 1173.548

(a) GED

Methods Dblp Amazon PubMed CiteSeer Cora_ML Protein AIDS

GREED 6.84 1.46 1.30 1.28 1.25 0.86 0.84
H2MN 44.68 23.2 25.79 27.54 29.04 19.33 9.63

NSC NA 21 35.05 24.46 70.59 21 4
SIMGNN 109.56 47.68 39.80 39.40 40.73 39.02 43.83
BRANCH 626.489 79.25 99.11 155.09 132.98 52.26 12.93
MIP-F2 1979.185 861.95 606.01 827.65 790.01 881.77 360.12

(b) SED

Datasets Range (θ = 2) 10-NN
CPU GPU CPU GPU

L-Scan Indexed L-Scan H2MN L-Scan Indexed L-Scan H2MN
PubMed 0.693 0.56 0.004 26.6 1.01 0.49 0.004 27.5
Amazon 9.09 5.07 0.025 371 11.3 4.75 0.027 372
Dblp 48 20.9 0.070 696 50.4 18.6 0.126 698

(c) Scalability

Table 3: (a-b) Running times of all methods in seconds per 10k query-target pair. (c) Querying
time (s) for SED in the three largest datasets. L-Scan indicates time taken by linear scan in
GREED (times differ based on whether executed on CPU or GPU).

graph distance computations; not only is it faster, it overcomes the barrier of GPU-dependence and
hence better suited for low-resource environments.

4.5 Ablation Study

In this study, we explore the impact of our inductive biases in learning from low-volume data. We
create two variants of GREED: (1) GREED-Dual trains the two parallel GNN models separately
without weight-sharing, and (2) GREED-NN uses an MLP instead of F . Both have strictly better
representational capacity than GREED, so are expected to match the performance with infinite data.
Figs. 4i-4k present the results on SED. The results of the same experiment on GED is provided in
Figs. F in the appendix. The RMSE of GREED is generally better than GREED-Dual, with the dif-
ference being more significant at low volumes. This indicates that siamese structure helps. Compared
to GREED, GREED-NN achieves marginally better performance at larger train sizes in PubMed and
CiteSeer. However, in Dblp, GREED is consistently better. The number of subgraphs in a dataset
grows exponentially with the node set size. Hence, an MLP needs growing training data to accurately
model the intricacies of this search space. In Dblp, even 100k pairs is not enough to improve upon F .
Furthermore, since computing GED and SED is NP-hard, generating large volumes of training data is
not desirable. Overall, these trends indicate that F enables better generalization and scalability with
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respect to accuracy. Furthermore, given that its performance is close to an MLP even on high-volume
training data, and it enables indexing, the benefits outweigh the marginal reduction in accuracy.

We also observe that generally, GREED-NN performs better than GREED-dual. GREED-NN retains
the inductive bias imparted by the Siamese architecture, but ablates the inductive bias of the custom
prediction function. The opposite happens in the case of GREED-Dual. The observed phenomenon of
GREED-NN generally out-performing GREED-Dual can be interpreted as evidence for the Siamese
architecture providing a stronger inductive bias than the custom prediction function.

More ablations studies justifying our choice of GIN and the sum-pool layer are provided in App. G.

4.6 Generalization to Unseen Query Distributions in SED

We train the model by sampling queries from the graph database through BFS enumerations. How
does GREED generalize to unseen distributions? Towards that end, we generate queries from the
three unseen distributions of (1) Random Walks (RW), (2) Random Walks with Restarts (RWR), and
(3) SHADOW [48] (See App. J for details on the sampling strategies). We first note that in AIDS,
we use real queries of functional groups, and thus the good performance in AIDS indicates good
generalizability. In Table 4a, we more exhaustively analyze this aspect. As visible, the errors remain
low. Even more surprisingly, the errors on RW and RWR are better than the train distribution of BFS
itself. This indicates good generalization to unseen distributions.

4.7 Generalizability to Unseen, Larger Query Sizes:

Generating training data for learning GED and SED is expensive since optimal distance computations
are NP-hard. Hence, a desirable property would be to learn from small graphs and then generalize to
larger unseen graphs. We evaluate this ability for GREED and H2MN. Table 4b provides the numbers.
We notice that although there is some deterioration in the quality for query sizes in the range [25, 50]
when compared to the entire set, it is not severe (GREED-50 in Table 4b). However, if the train set
only contains queries till size 25 and we deploy the learned model to infer on queries of larger unseen
sizes, the drop in quality is significant (GREED-25 in Table 4b). This drop is even more dramatic in
H2MN. On the positive side, GREED remains superior to the optimal non-neural approach (MIP-F2)
when run with a generous time limit of 60 seconds per query. Overall, this experiment highlights one
direction that needs further study and improvement.

5 Conclusions, Limitation, and Future Directions

The problem of learning graph distances from their embeddings has seen much interest over the
last few years. This thread of research is important since it allows us to overcome the bottleneck of
exponential graph alignment space. Our experiments clearly establish GREED as the state of the art
for both GED and SED (See App. K for preliminary results on maximum common subgraph similarity).
In addition, it is significantly faster and provides better theoretical correspondence between properties
of the original space and predicted space. One clear direction of future work that emerges from our
experiments is that GREED, and existing methods of graph distance learning, do not generalize well
to unseen larger query sizes. We hope to address this limitation next.

Sampler PubMed CiteSeer Amazon

BFS 0.728 0.519 0.495
RW 0.508 0.770 0.490

RWR 0.545 0.754 0.299
SHADOW 0.966 0.753 0.830

(a) Query distributions

Method PubMed CiteSeer Amazon

VQ ∈ [0, 50] VQ ∈ [25, 50] VQ ∈ [0, 50] VQ ∈ [25, 50] VQ ∈ [0, 50] VQ ∈ [25, 50]

GREED-50 1.294 1.917 0.728 0.948 0.638 0.782
GREED-25 2.824 4.999 4.740 9.052 1.152 1.724
H2MN-50 3.133 5.112 4.9380 8.583 6.014 9.550
H2MN-25 7.417 13.366 10.459 19.787 5.720 9.462
MIP-F2 3.507 6.278 4.831 8.505 6.454 10.293

(b) Query size

Table 4: (a) RMSE on unseen query distributions. BFS (seen) is the baseline to compare against.
(b) RMSE against query sizes. GREED-50 indicates GREED trained on a dataset containing
queries of size up to 50. GREED-25 is defined analogously.
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Appendix

A GED and SED

The computation of GED relies on a graph mapping.

Definition 1 (Graph Mapping) Given two graphs G1 and G2, let G̃1 = (Ṽ1, Ẽ1, L̃1) and G̃2 =

(Ṽ2, Ẽ2, L̃2) be obtained by adding dummy nodes and edges (labeled with ε) to G1 and G2 respectively,
such that |V1| = |V2| and |E1| = |E2|. A node mapping between G1 and G2 is a bijection π : G̃1 → G̃2

where (i) ∀v ∈ Ṽ1, π(v) ∈ Ṽ2 and at least one of v and π(v) is not a dummy; (ii) ∀e = (v1, v2) ∈
Ẽ1, π(e) = (π(v1), (π(v2))) ∈ Ẽ2 and at least one of e and π(e) is not a dummy.

Example 1 Fig. 1 shows a graph mapping. Edge mappings can be trivially inferred.

Definition 2 (Graph Edit Distance (GED) under mapping π) GED between G1 and G2 under π is

GEDπ(G1,G2) =
∑
v∈Ṽ1

d(L(v),L(π(v))) +
∑
e∈Ẽ1

d(L(e),L(π(e))) (12)

where d : Σ × Σ → R+
0 is a distance function over the label set. d(`1, `2) models an insertion if

`1 = ε, deletion if `2 = ε and replacement if `1 6= `2 and neither `1 nor `2 is a dummy.

We assume d to be a binary function, where d(`1, `2) = 1 if `1 6= `2, otherwise, 0.
Definition 3 (Graph Edit Distance (GED)) GED is the minimum distance under all mappings.

GED(G1,G2) = min
∀π∈Φ(G1,G2)

GEDπ(G1,G2) (13)

Φ(G1,G2) denotes the set of all possible node maps from G1 to G2.

Definition 4 (Subgraph Edit Distance (SED)) SED is the minimum GED over all subgraphs of G2.
SED(G1,G2) = min

S⊆G2
GED(G1,S) (14)

Observation 4 (i) GED(G1,G2) ≥ 0, (ii) SED(G1,G2) ≥ 0.

Observation 5 (i) GED(G1,G2) = 0 iff G1 is isomorphic to G2, (ii) SED(G1,G2) = 0 iff G1 is
subgraph isomorphic to G2.

B Additional Proofs

B.1 Proof of Theorem. 1

Our proof relies on two lemmas.

PROOF of Theorem 1. It suffices to prove (i) SED(G1,G2) ≥ ĜED(G1,G2) and (ii) ĜED(G1,G2) ≥
SED(G1,G2).

(i) Let S = (VS , ES ,LS) ⊆ G2 be the subgraph minimizing SED(G1,S) (Recall Eq. 14). Consider
the mapping π from G1 to S corresponding to SED(G1,S) (and hence GED(G1,S) as well). We
extend π to define a mapping π̂ from G1 to G2 by mapping of all nodes in set V2 \ VS to dummy
nodes in G1; the edge mappings are defined analogously.

Under this construction, SED(G1,S) = GED(G1,G2) =

ĜEDπ̂(G1,G2) ≥ ĜED(G1,G2). This follows from the property that under d̂, insertion costs are zero,
that is d̂(ε, `) = 0. Thus, the additional mappings introduced in π̂ do not incur additional costs under
d̂.

(ii) Consider S ⊆ G2 and a mapping π from G1 to S such that GEDπ(G1,S) = ĜED(G1,G2).
The existence of such a subgraph is guaranteed (See Lemma 3). From the definition of GED,
GEDπ(G1,S) ≥ GED(G1,S). Furthermore, since S ⊆ G2, GED(G1, S) ≥ SED(G1,G2). Combining
all these results, we have ĜED(G1,G2) ≥ GED(G1, S) ≥ SED(G1,G2).
Hence, the claim is proved. �
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B.2 Proof of Thm 2.

PROOF. From Thm. 1, we know SED(G1,G2) = ĜED(G1,G2). Combining Obs. 1 with Theorem 1,
if we show d̂(`1, `3) ≤ d̂(`1, `2) + d̂(`2, `3), then the triangle inequality of SED is established. We
divide the proof into four cases:
(i) None of `1, `2, `3 is ε. Hence, d̂(`1, `3) = d(`1, `3) and the triangle inequality is satisfied.
(ii) `1 = ε. The LHS is 0 and hence the triangle inequality is satisfied.
(iii) `1 6= ε and `2 = ε. LHS≤ 1 and RHS= 1. Hence, satisfied.
(iv) Only `3 = ε. Here, LHS= 1 and RHS≥ 1.
These four cases cover all possible situations and hence, the triangle inequality is established. �

B.3 Proof of Lemma 3

Lemma 3 There exists a subgraph S of G2 and a node map π from G1 to S such that GEDπ(G1,S) =

ĜED(G1,G2).

PROOF. Let π′ be a node map from G1 to G2 corresponding to ĜED(G1,G2). Let h1, · · · , hl be the
nodes of G2 which are inserted in π′. Construct subgraph S of G2 by removing nodes h1, · · · , hl and
their incident edges from G2. Let π be the node map from G1 to S which is obtained by removing
h′1, · · · , h′l from the domain and h1, · · · , hl from the co-domain of π. Since insertion costs are 0 in d̂
and π contains only non-insert operations, then GEDπ(G1,S) = ĜED(G1,G2). Hence, the claim is
proved. �

B.4 Proof of Lemma 2.

PROOF. Let x,y ∈ Rn be vectors of dimension n. We use the notation x[i] to denote the ith
coordinate of x. We observe that :

(ReLU(x) + ReLU(y))[i] = ReLU(x)[i] + ReLU(y)[i] = ReLU(x[i]) + ReLU(y[i])

≥ ReLU(x[i] + y[i]) = (ReLU(x + y))[i]

Since ‖.‖ is monotonic, this implies ‖ReLU(x) + ReLU(y)‖ ≥ ‖ReLU(x + y)‖. Using the triangle
inequality for ‖.‖, we get:

‖ReLU(x)‖+ ‖ReLU(y)‖ ≥ ‖ReLU(x) + ReLU(y)‖ ≥ ‖ReLU(x + y)‖ (15)

Substituting x = ZGQ − ZGT ′ ,y = ZGT ′ − ZGT , we get,

‖ReLU(ZGQ − ZGT ′ )‖+ ‖ReLU(ZGT ′ − ZGT )‖ ≥ ‖ReLU(ZGQ − ZGT )‖.

This implies F(ZGQ ,ZGT ′ ) + F(ZGT ′ ,ZGT ) ≥ Fs (ZGQ ,ZGT ). �

C Complexity Analysis

For this analysis, we make the simplifying assumption that the hidden dimension in the Pre-MLP,
GIN and Post-MLP are all d. The average density of the graph is g. The number of hidden layers in
Pre-MLP, and Post-MLP are L, and k in GIN.

The computation cost per node for each of these components are as follows.

• Pre-MLP: The operations in the MLP involve linear transformation over the input vector xv of
dimension |Σ|, followed by non-linearity. This results in O(|V|(|Σ| · d+ d2L)) cost.

• GIN: GIN aggregates information from each of the neighbors, which consumes O(d · g) time. The
linear transformation consumes an additional O(d2) time. Applying non-linearity takes O(d) time
since it is a linear pass over the hidden dimensions. Finally these operations are repeated over each
of the k hidden layers, results in a total O(k(d2 + dg)) computation time per node. Across, all
nodes, the total cost is O(|V|kd2 + |E|kd) time. The degree g terms gets absorbed since each edge
passes message twice across all nodes.

• Concatenation: This step consumes O(kd) time per node.
• Pool: Pool iterates over the GIN representation of each node requiring O(|V|dk) time.
• Post-MLP: The final MLP takes dk dimensional vector as input and maps it to a d dimensional

vector over L layers. This consumes O(kd2 + d2L) time.

15



Algorithm 1 BUILDINDEX

Input: Embeddings D of graphs
Output: Root node of the constructed tree
1: if D = ∅ then return NULL
2: ZP ← arbitrary embedding in D as pivot
3: m1 ← MEDIAN({Fs(ZP ,ZG) : ZG ∈ D \ {ZP}})
4: m2 ← MEDIAN({Fs(ZG ,ZP) : ZG ∈ D \ {ZP}})
5: D1 ← {ZG : Fs(ZP ,ZG) ≤ m1,Fs(ZG ,ZP) ≤ m2}
6: D2 ← {ZG : Fs(ZP ,ZG) ≤ m1,Fs(ZG ,ZP) > m2}
7: D3 ← {ZG : Fs(ZP ,ZG) > m1,Fs(ZG ,ZP) ≤ m2}
8: D4 ← {ZG : Fs(ZP ,ZG) > m1,Fs(ZG ,ZP) > m2}
9: for i = 1 to 4 do
10: ti ← BUILDINDEX(Di)

11: Return NODE(ZP ,m1,m2, t1, t2, t3, t4)

Combining all these factors, the total inference complexity for a graph isO(|V|(|Σ| ·d+d2L+kd2)+
|E|kd). This operation is repeated on both the query and target graphs to compute their embeddings,
on which distance function F is operated. Thus, the final cost is O(n(|Σ| · d+ d2L+ kd2) +mkd),
where n = |VQ|+ |VT | and m = |EQ|+ |ET |.

D Querying in the Embedding Space

We assume the standard querying setup where the database graphs are known apriori, while the query
graph is unseen and provided at query time. Since GREED generates pair-independent embeddings,
representations of the database graphs can be generated apriori and stored. Furthermore, due to both
the predicted GED and SED satisfying the triangle inequality, the embeddings can be indexed. Thus,
at query time, we need to perform only two operations: (1) embed the query graph GQ, and (2) scan
the database embeddings against the query embedding to compute the answer set. We focus the
discussion on the two most common database queries of range and k-NN queries.

Definition 5 (Range Query) Given a database D = {ZG1 , · · · ,ZGn} of graph embeddings, a query
graph GQ and a threshold θ, find the answer set A = {Gi | Fg(ZGi ,ZGQ) ≤ θ}.

Definition 6 (k-NN Query) Given a database D = {ZG1 , · · · ,ZGn} of graph embeddings, a query
graph GQ and k, find the database graphs with the k smallest distance to GQ as per Fg(ZGi ,ZGQ).

The above definitions can be adopted for SED by using Fs. For the rest of the discussion, we assume
Fs since due to asymmetry, SED requires some additional considerations.

D.1 Indexing

We exploit the triangle inequality of GED and SED to index the database embeddings. Alg. 1 presents
the pseudocode. We choose a random embedding ZP ∈ D as the pivot (line 2), based on which
we split the remaining embeddings into four groups (lines 3-8). This process continues recursively
on each group (lines 9-10) till a partition gets empty (line 1). Note that in GED the distances are

Algorithm 2 RANGEQUERY

Input: Query embedding ZGQ , threshold θ, root node t = NODE(ZP ,m1,m2, t1, t2, t3, t4)

Output: A← {ZG | Fs(ZGQ ,ZG) ≤ θ}
1: if t = NULL then return ∅
2: if Fs(ZP ,ZGQ ) ≤ m1 − θ then
3: mark t3 and t4 for pruning
4: if Fs(ZGQ ,ZP) > m2 + θ then
5: mark t1 and t3 for pruning
6: if Fs(ZGQ ,ZP) ≤ θ −m1 then
7: A← A ∪ D1 ∪ D2

8: mark t1 and t2 for pruning
9: else
10: A← ∅
11: for i = 1 to 4 do
12: if ti is not marked for pruning then
13: A← A ∪ RANGEQUERY

(
ZGQ , θ, ti

)
14: Return A
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Name Avg.|V| Avg.|E| |Σ| #Graphs Avg.|VQ| Avg.|EQ|
Dblp 1.66M 7.2M 8 1 15 14

Amazon 334k 925k 1 1 12 16
PubMed 19.7k 44.3k 3 1 12 11

CiteSeer 4.2k 5.3k 6 1 12 12
Cora_ML 3k 8.2k 7 1 11 11
Protein 38 70 3 1, 071 9 11

AIDS 14 15 38 1, 811 7 7
AIDS’ 9 9 29 700 9 9
Linux 8 7 1 1, 000 8 7
IMDB 13 65 1 1, 500 13 65

Table A: Datasets

symmetric and hence m1 and m2 will converge. Consequently, we will have two partitions at each
node instead of four.

D.2 Range Query

From the triangle inequality, we can infer the lower bounds listed in lines 2 and 4 of Alg. 2. Hence, if
these bounds are larger than θ, the corresponding sub-trees are pruned. Similarly, if the upper bound
is smaller than θ (line 6), the entire sub-tree is added to the answer set (line 7). Otherwise, we recurse
(lines 11-13).

D.3 k-NN query

k-NN utilizes the same bounds from Alg. 2 to prune and prioritize the search space. However,
exploration proceeds in a best-first search manner. Alg. 3 presents the pseudocode. Alg. 3 maintains
two priority-queues; one to keep track of the k-NN till the current stage of the search process (A in
line 1), and the second to store index nodes in ascending order of their lower bound distance (Cands
in line 2). We pop the best node P from Cands and include it to the answer set if the distance is
within top-k (lines 6-7). Further, the sub-tree at P is processed if it satisfies the lower bound criteria
(lines 8-15). The search ends when either Cands is either empty or the lower bound of the top-most
node is larger than the k-th distance in A (line 4). In case of GED, LB1 (line 8) and LB2 (line 9) will
converge to the same value due to symmetry .

D.4 Scaling SED to million-scale graphs

SED is typically encountered in situations where the query is a small graph (< 50 nodes) [9, 32] and
the target graph is a single large graph, potentially containing millions of nodes and edges. To scale
to million-sized target graphs, we perform neighborhood decomposition. Specifically, we extract the
k-hop neighborhood Gv around each node v ∈ VT in the target graph GT , embed them into feature
space using GREED, and then indexed as outlined § D.1. The distance between query GQ and GT is
computed as:

Algorithm 3 k-NN
Input: Query embedding ZGQ , k, root node t = NODE(ZP ,m1,m2, t1, t2, t3, t4)

Output: A← top-k closest embeddings in D
1: A← A priority queue of size up to k. Stores entries in descending order of distance.
2: Cands← A priority queue. Stores entries in ascending order of distance lower bound.

3: Cands.insert
(〈
t,Fs

(
ZGQ ,ZP

)〉)
4: while Cands.size() > 0 And Cands.top().LB < A.top().distance do
5: P ← Cands.pop()

6: if |A| < k Or Fs

(
ZGQ ,ZP

)
< A.top().distance then

7: A.insert
(〈
P,Fs

(
ZGQ ,ZP

)〉)
8: LB1 ← |Fs

(
ZP ,ZGQ

)
−m1|

9: LB2 ← |Fs

(
ZGQ ,ZP

)
−m2|

10: LB = max{LB1, LB2}
11: if LB ≤ θ then
12: Cands.insert (〈t1, LB〉)
13: Cands.insert (〈t2, LB〉)
14: Cands.insert (〈t3, LB〉)
15: Cands.insert (〈t4, LB〉)
16: Return A
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Fs (GQ,GT ) = min
∀Gv∈GT

{Fs (GQ,Gv)} (16)

We next show that as long as the k-hop neighborhoods are sufficiently large, the proposed neighbor-
hood decomposition strategy is optimal.

Theorem 3 A nearest subgraph S ⊆ GT to GQ can be found in an l/2-hop neighborhood Gv ⊆ GT ,
centered at some v ∈ VGT , where l is the length of the longest path in GQ.

PROOF. From Thm. 1, SED(GQ,GT ) = ĜED(GQ,GT ). Let π be the node map produced by
ĜED(GQ,GT ). Let us now consider the subgraph S ⊆ GT induced by all node maps of π that are
not inserts. It follows that SED(GQ,GT ) = ĜED(GQ,GT ) = SED(GQ,S). Since there are no inserts,
the topology of S is a subgraph of G1 (i.e., subgraph isomorphic if we ignore label information).
Hence, the diameter of S is ≤ the length l of the longest path in GQ. Since S ⊆ GT , S is contained
in some l/2 neighborhood Gv of GT . �

Finding the length of the longest path is NP-hard. However, we do not need to find the exact length of
the longest path: any upper bound suffices. Moreover we do not even need the length of the longest
path for l. The nearest subgraph having a diameter equal to l is rare. In practice, the diameter of the
nearest subgraph is unlikely to be much higher than the diameter of the query itself.

E Datasets

Dblp: Dblp is a co-authorship network where each node is an author and two authors are connected
by an edge if they have co-authored a paper. The label of a node is the venue where the authors has
published most frequently. The dataset has been obtained from https://www.aminer.org/citation.
Amazon [28]: Each node in Amazon represents a product and two nodes are connected by an edge if
they are frequently co-purchased. The graph is unlabeled and hence equivalent to a graph containing
a single label on all nodes.
PubMed: PubMed dataset is a citation network which consists of scientific publications from PubMed
database pertaining to diabetes classified into one of three classes.
Protein: Protein dataset consists of protein graphs. Each node is labeled with a one of three
functional roles of the protein.
AIDS: AIDS dataset consists of graphs constructed from the AIDS antiviral screen database. These
graphs representing molecular compounds with Hydrogen atoms omitted. Atoms are represented as
nodes and chemical bonds as edges.
AIDS’: AIDS’ dataset is another collection of graphs constructed from the AIDS antiviral screen
database. The graphs and their properties differ from those in AIDS. These graphs also represent
chemical compound structures.
CiteSeer: CiteSeer is a citation network which consists of scientific publications classified into
one of six classes. Generally a smaller version is used for this dataset, but we use the larger version
from [8].
Cora_ML: Cora dataset is a citation dataset consisting of many scientific publications classified into
one of seven classes based on paper topic. Cora_ML is a smaller datset extracted from Cora [8].
Linux: Linux dataset is a collection of program dependence graphs, where each graph is a function
and nodes represent statements while edges represent dependency between statements.
IMDB: IMDB dataset is a collection of ego-networks of actors/actresses that have appeared together in
any movie.

F Baselines

GMN explicitly assumes the distance function to be symmetric, which violates SED. GRAPHSIM has
an assumption that a large difference in size of the query and target graphs leads to a large distance,
which is not true in SED. In GOTSIM, there is an explicit assumption of modeling a symmetric
distance function since they use cosine similarity to compare node neighborhoods The normalization
factor in Eq. 6 of [14] is also based on whole graph matching. Finally, GENN-A∗ is not included for
SED since it does not scale on graphs beyond 10 nodes (See § 4.3).
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(a) Query (b) Rank 1 (c) Rank 2 (d) Rank 3 (e) Rank 4 (f) Rank 5

Figure E: Visualizations of query and resulting matches produced by GREED. Red, Green
and Yellow colors indicate Carbon, Nitrogen and Oxygen atoms respectively. The actual and
predicted SED for the target graphs are (b) 0, 0.4, (c) 0, 0.5, (d) 1, 0.6, (e) 0, 0.6 and (f) 1, 0.6.

G Ablation Study

Impact of GIN: To highlight the importance of GIN, we conduct ablation studies by replacing the
GIN convolution layers in the model with several other convolution layers. As visible in the Table B,
GIN consistently achieves the best accuracy. This is not surprising since GIN is provably the most
expressive among GNNs in distinguishing graph structures (essential to SED or GED computation)
and is as powerful as the Weisfeiler-Lehman Graph Isomorphism test [47].

Methods CiteSeer (SED) PubMed (SED) Amazon (SED) IMDB (GED)

GREED (GIN) 0.519 0.728 0.495 6.734
GREED-GCN 0.556 0.756 0.532 12.151

GREED-GRAPHSAGE 1.364 1.156 1.841 91.312
GREED-GAT 1.294 1.259 1.843 89.034

Table B: Ablation studies: GIN vs others. RMSE produced by different methods are shown
and GREED with GIN produces the best results.

Pool functions CiteSeer (SED) PubMed (SED) Amazon (SED) IMDB (GED)

GREED (Sum) 0.519 0.728 0.495 6.734
GREED-Max 0.795 0.709 0.603 52.519

GREED-Mean 0.922 0.732 0.846 52.483
GREED-Attention 0.914 0.797 0.868 130.47

Table C: Ablation studies: sum-pool vs others. The sum-pool is the best choice among the
considered alternatives.

Impact of sum-pool: To substantiate our choice of the pooling layer, we have performed ablation
studies with various pooling functions as replacements for sum-pool. It is clear from Table C that
sum-pool is the best choice among the considered alternatives.

Sum-pool can better distinguish graph sizes better than other aggregation functions such as mean-pool
or max-pool. To elaborate, let us consider a graph G1 that is significantly larger than another graph
G2. In this scenario, the individual coordinates of G1’s embedding can potentially be significantly
larger than those of G2 since in G1 the summation is being done over a larger set of embeddings.
Both mean-pool and max-pool fail to capture the size information as effectively, since the max and
the mean operations do not scale with the number of inputs.

Impact of Pre-mlp layer: Table D presents the results. As visible, we do not see any significant
difference in performance on average.

Performance of GREED-NN and GREED-Dual on GED: Fig. F presents the results. The trends
are similar to what we observed for SED in Sec. 4.5. GREED-NN closes the performance gap with
GREED as more training data is provided. Furthermore, GREED-dual is consistently worse that
GREED.

H Alignment

In real-world applications of subgraph similarity search, alignments are of interest only for a small
number of similar subgraphs. Our framework is intended to serve as a filter to retrieve this small set
of similar subgraphs from a large number of candidates. To elaborate, a graph database may contain
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RMSE With Pre-MLP Without Pre-MLP
AIDS’ (SED) 0.51 0.51

Amazon 0.5 0.39
CiteSeer 0.52 0.51
Cora_ML 0.64 0.68

AIDS (GED) 0.8 0.85
IMDB (GED) 6.73 7.68
Linux (GED) 0.42 0.41

Protein 0.52 0.52
PubMed 0.73 0.73

Table D: RMSE of GREED with and without the Pre-mlp layer.
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Figure F: Performance of GREED-NN and GREED-Dual on GED. Refer to § 4.5 for details.

Methods PubMed Amazon

GREED Retrieval 0.373 6.471
MIP-F2 Alignment 52.8 68.4

Table E: The average running times in seconds per top-10 query. Our technique is much faster
than MIP-F2 alignment.

thousands or millions of graphs (or alternatively, thousands or millions of neighborhoods of a large
graph) which need to be inspected for similar subgraphs. A user is typically interested in only a
handful of these subgraphs that are highly similar to the query. Since the filtered set is significantly
smaller, a non-neural exact algorithm suffices to construct the alignments (Lemma 1 allows us to
adapt general cost GED alignment techniques for SED alignment). Computing alignments across the
entire database is unnecessary and slows down the query response time.

To substantiate our claim, we show the average running time for answering 10-NN queries. We
break up the running time into two components: (i) 10-NN retrieval time by GREED, (ii) exact
alignment time using MIP-F2 for the 10-NN neighborhoods retrieved by GREED. We observe that
exact alignment by existing methods on the 10-NN neighborhoods completes in reasonable time. In
contrast, GENN-A∗ does not scale on either PubMed or Amazon since it computes alignments across
all (sub)graphs.

I Visualization

Searching for molecular fragment containment is a routine task in drug discovery [20]. Motivated by
this, we show the top-5 matches to an SED query on the AIDS dataset produced by GREED in Fig. E.
The query is a functional group (Hydrogen atoms are not represented). GREED is able to extract
chemical compounds that contain this molecular fragment (except for ranks 3 and 5, which contain
this group with 1 edit) from around 2000 chemical compounds with varying sizes and structures.
This validates the efficacy of GREED at a semantic level.

J Subgraph sampling strategies for SED generalizability

In RWR, we perform fixed length random walks, where the length of a walk is the average diameter
size of the queries generated through BFS during training. Next, we merge the walks to form a graph.
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In RW, we perform random walks, till the diameter of the resultant graph is the same as the average
diameter of the BFS sampled train graphs.

The details of the SHADOW sampler is explained in [48].

K Extension to maximum common subgraph similarity (MCSS)

Besides GED, MCSS is also a popular similarity measure for whole-graph comparison. Except
the inductive bias injected through F , all components of GREED is generic for any graph distance
function. In this section, we replace F with an MLP and model MCSS. Table F presents the results.
As visible, the trends hold even in this distance function, where GREED outperforms the closest
baseline of H2MN.

Methods AIDS Linux IMDB

GREED 0.514 0.085 0.293
H2MN 0.652 0.152 0.475

Table F: RMSE on MCSS.

L Heat Maps for Prediction Error

In Figures G to P, we show the variation of the errors on SED and GED prediction with query sizes and
ground truth values for GREED and the baselines on all the corresponding datasets. This experiment
is an extension of the heat-map results in Fig. 3 in the main paper. These datasets show variations
in the distributions of SED and GED values. It is interesting to observe that among the baselines,
different methods perform well on different regions (i.e., combinations of high/low SED and high/low
query sizes). The baselines do not show good performance on all regions. However, for GREED, we
see a much better coverage for all types of regions in the domain. Furthermore, for every region, our
models outperform (or are at least competitive with) the best performing baseline for that region.
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Figure G: Heat Maps of SED error against query size and SED values for Dblp. Darker means
higher error.
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Figure H: Heat Maps of SED error against query size and SED values for Amazon. Darker
means higher error.
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Figure I: Heat Maps of SED error against query size and SED values for PubMed. Darker means
higher error.
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Figure J: Heat Maps of SED error against query size and SED values for CiteSeer. Darker
means higher error.
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Figure K: Heat Maps of SED error against query size and SED values for Cora_ML. Darker
means higher error.
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Figure L: Heat Maps of SED error against query size and SED values for Protein. Darker
means higher error.

0 10 20
SED

6

8

10

12

14

Qu
er

y 
Si

ze

(a) GREED

0 20
SED

(b) H2MN

0 20
SED

(c) H2MN-NE

0 20
SED

(d) SIMGNN

0 20
SED

(e) BRANCH

0 10 20
SED

0

1

2

3

4

5

(f) MIP-F2

Figure M: Heat Maps of SED error against query size and SED values for AIDS. Darker means
higher error.

22



0 10 20
GED

2

4

6

8

10

Qu
er

y 
Si

ze

(a) GREED

0 10 20
GED

(b) H2MN

0 10 20
GED

(c) H2MN-NE

0 10 20
GED

(d) SIMGNN

0 10 20
GED

(e) BRANCH

0 10 20
GED

0

1

2

3

4

5

(f) MIP-F2

Figure N: Heat Maps of GED error against query size and GED values for AIDS’. Darker means
higher error.
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Figure O: Heat Maps of GED error against query size and GED values for Linux. Darker
means higher error.
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Figure P: Heat Maps of GED error against query size and GED values for IMDB. Darker means
higher error.
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